当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Selective recovery of indium from iron-rich solutions using an Aliquat 336 iodide supported ionic liquid phase (SILP)
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2018-11-30 , DOI: 10.1016/j.seppur.2018.11.092
Stijn Van Roosendael , Mercedes Regadío , Joris Roosen , Koen Binnemans

Selective recovery of valuable metals from secondary (waste) sources is essential for better resource efficiency. However, low-grade waste streams typically have complex and variable compositions and low concentrations of valuable metals. Therefore, development of novel technologies, able to deal with these complex and variable waste streams, is necessary. In this work, we present a process for the separation and purification of indium from iron-rich matrix solutions making use of a supported ionic liquid phase (SILP). The SILP used in this study was synthesized by impregnating Amberlite XAD–16N with the iodide form of the quaternary ammonium salt Aliquat 336. The SILP was characterized by infrared spectroscopy, elemental analysis, density, specific surface area and porosity and it was tested for the selective recovery of indium. Adsorption was preceded by the addition of an excess of iodide anions to the solution, to form indium iodide species, which were extracted to the ionic liquid of the SILP. A high selectivity for indium over iron could be achieved because iron iodide species are not stable in aqueous medium. The reaction kinetics and several adsorption parameters, including anion concentration, adsorbent mass, stripping and reusability of the adsorbent were investigated, using synthetic binary iron-indium solutions containing iron in large excess in comparison with indium, as is typically the case in low-grade ores or industrial process residues. Finally, the developed indium recovery process was validated on a real leachate of goethite residue. A pure indium solution of 49 mg L–1 was obtained with an indium-over-iron mass ratio of 7.9 and a selectivity factor equal to 5400.



中文翻译:

使用Aliquat 336碘化物负载的离子液相(SILP)从富铁溶液中选择性回收铟

从二级(废物)来源中选择性回收有价值的金属对于提高资源效率至关重要。然而,低级废物流通常具有复杂且可变的成分和低浓度的有价值的金属。因此,有必要开发能够应对这些复杂而多变的废物流的新技术。在这项工作中,我们提出了一种利用负载型离子液体相(SILP)从富铁基质溶液中分离和纯化铟的方法。本研究中使用的SILP是通过将碘化物形式的季铵盐Aliquat 336浸入Amberlite XAD-16N来合成的。SILP通过红外光谱,元素分析,密度,比表面积和孔隙率进行了表征,并对其进行了测试。铟的选择性回收。在吸附之前,向溶液中添加过量的碘化物阴离子,以形成碘化铟物质,将其提取到SILP的离子液体中。由于碘化铁物质在水性介质中不稳定,因此可以实现铟对铁的高选择性。使用了与铟相比铁含量大大过量的合成二元铁-铟溶液,研究了反应动力学和几个吸附参数,包括阴离子浓度,吸附剂质量,汽提和吸附剂的可重复使用性,这通常是低品位情况。矿石或工业过程中的残留物。最后,在针铁矿残渣的真实浸出液上验证了开发的铟回收工艺。49 mg L的纯铟溶液 形成碘化铟物质,然后将其提取到SILP的离子液体中。由于碘化铁物质在水性介质中不稳定,因此可以实现铟对铁的高选择性。使用了与铟相比铁含量大大过量的合成二元铁-铟溶液,研究了反应动力学和几个吸附参数,包括阴离子浓度,吸附剂质量,汽提和吸附剂的可重复使用性,这通常是低品位情况。矿石或工业过程中的残留物。最后,在针铁矿残渣的真实浸出液上验证了开发的铟回收工艺。49 mg L的纯铟溶液 形成碘化铟物种,然后将其提取到SILP的离子液体中。由于碘化铁物质在水性介质中不稳定,因此可以实现铟对铁的高选择性。使用了与铟相比铁含量大大过量的合成二元铁-铟溶液,研究了反应动力学和几个吸附参数,包括阴离子浓度,吸附剂质量,汽提和吸附剂的可重复使用性,这通常是低品位情况。矿石或工业过程中的残留物。最后,在针铁矿残渣的真实浸出液上验证了开发的铟回收工艺。49 mg L的纯铟溶液 由于碘化铁物质在水性介质中不稳定,因此可以实现铟对铁的高选择性。使用了与铟相比铁含量大大过量的合成二元铁-铟溶液,研究了反应动力学和几个吸附参数,包括阴离子浓度,吸附剂质量,汽提和吸附剂的可重复使用性,这通常是低品位情况。矿石或工业过程中的残留物。最后,在针铁矿残渣的真实浸出液上验证了开发的铟回收工艺。49 mg L的纯铟溶液 由于碘化铁物质在水性介质中不稳定,因此可以实现铟对铁的高选择性。使用了与铟相比铁含量大大过量的合成二元铁-铟溶液,研究了反应动力学和几个吸附参数,包括阴离子浓度,吸附剂质量,汽提和吸附剂的可重复使用性,这通常是低品位情况。矿石或工业过程中的残留物。最后,在针铁矿残渣的真实浸出液上验证了开发的铟回收工艺。49 mg L的纯铟溶液 使用的合成二元铁-铟溶液中的铁比铟多得多,这通常在低品位矿石或工业过程残渣中是常见的。最后,在针铁矿残渣的真实浸出液上验证了开发的铟回收工艺。49 mg L的纯铟溶液 使用的合成二元铁-铟溶液中的铁比铟多得多,这通常在低品位矿石或工业过程残渣中是常见的。最后,在针铁矿残渣的真实浸出液上验证了开发的铟回收工艺。49 mg L的纯铟溶液铟与铁的质量比为7.9,选择系数等于5400,得到–1

更新日期:2018-11-30
down
wechat
bug