当前位置: X-MOL 学术Mol. Syst. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Semi-quantitative design of black phosphorous field-effect transistor sensors for heavy metal ion detection in aqueous media†
Molecular Systems Design & Engineering ( IF 3.2 ) Pub Date : 2018-11-21 00:00:00 , DOI: 10.1039/c8me00056e
Jingbo Chang 1, 2, 3, 4 , Haihui Pu 1, 2, 3, 4 , Spencer A. Wells 4, 5, 6, 7 , Keying Shi 8, 9, 10, 11, 12 , Xiaoru Guo 1, 2, 3, 4 , Guihua Zhou 1, 2, 3, 4 , Xiaoyu Sui 1, 2, 3, 4 , Ren Ren 1, 2, 3, 4 , Shun Mao 1, 2, 3, 4, 13 , Yantao Chen 1, 2, 3, 4 , Mark C. Hersam 4, 5, 6, 7, 14 , Junhong Chen 1, 2, 3, 4
Affiliation  

Two-dimensional (2D) crystalline nanomaterial based field-effect transistor (FET) water sensors are attracting increased attention due to their low cost, portability, rapid response, and high sensitivity to aqueous contaminants. However, a generic model to aid in sensor design by describing direct interactions between metal ions and 2D nanomaterials is lacking. Here, we report a broadly applicable statistical thermodynamics model that describes the behavior of FET sensors (e.g., lower detection limit) by relying only on the ion concentration and intrinsic properties of the sensor material such as band gap and carrier effective mass. Two regimes of the sensing mechanism (charge transfer vs. electrostatic gating) were predicted, depending on the relative size of the Debye screening length in the sensor material and the distance between adsorbed ions. At a lower ion adsorption density, the charge transfer effect is dominant, while the evolution from charge transfer to electrostatic gating effect occurs at a higher adsorption density as the distance between adsorbed ions approaches the Debye length. Owing to its tunable band gap, black phosphorus (BP) nanosheet FET sensors were selected to semi-quantitatively validate the model including the predicted evolution between the two sensing regimes. Among Na+, Mg2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions, BP nanosheet FET sensors were more responsive to Hg2+ ions for probe-free detection. The theoretical lower detection limit of Hg2+ ions can reach 0.1 nM (0.1 fM) in tap (deionized) water.

中文翻译:

用于水介质中重金属离子检测的黑色磷场效应晶体管传感器的半定量设计

基于二维(2D)晶体纳米材料的场效应晶体管(FET)水传感器因其低成本,便携性,快速响应以及对水污染物的高敏感性而受到越来越多的关注。但是,缺少通过描述金属离子和2D纳米材料之间的直接相互作用来帮助传感器设计的通用模型。在这里,我们报告了一种广泛适用的统计热力学模型,该模型仅依靠离子浓度和传感器材料的固有特性(例如带隙和载流子有效质量)来描述FET传感器的行为(例如,较低的检测极限)。感应机制的两种状态(电荷转移根据传感器材料中Debye筛查长度的相对大小以及所吸附离子之间的距离,可以预测静电门控)。在较低的离子吸附密度下,电荷转移效应占主导地位,而随着吸附离子之间的距离接近德拜长度,从较高的吸附密度开始发生从电荷转移到静电门控效应的演变。由于其可调带隙,选择了黑磷(BP)纳米片FET传感器以半定量验证模型,包括两种传感方案之间的预测演变。Na +,Mg 2 +,Zn 2 +,Cd 2 +,Pb 2+和Hg 2+离子,BP纳米片FET传感器对Hg 2+离子响应更快,因此无需探针。在自来水(去离子水中)中,Hg 2+离子的理论下限可以达到0.1 nM(0.1 fM)。
更新日期:2018-11-21
down
wechat
bug