当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesizing Living Tissues with Microfluidics
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2018-11-20 00:00:00 , DOI: 10.1021/acs.accounts.8b00417
Wenfu Zheng 1 , Xingyu Jiang 1, 2, 3
Affiliation  

In native tissues, various cell types organize and spatiotemporally function and communicate with neighboring or remote cells in a highly regulated way. How can we replicate these amazing functional structures in vitro? From the view of a chemist, the heterogeneous cells and extracellular matrix (ECM) could be regarded as various chemical substrate materials for “synthetic” reactions during tissue engineering. But how can we accelerate these reactions? Microfluidics provides ideal solutions. Microfluidics could be metaphorically regarded as a miniature “biofactory”, whereas the on-chip critical chemical cues such as biomolecule gradients and physical cues such as geometrical confinement, topological guidance, and mechanical stimulations, along with the external stimulations such as light, electricity, acoustics, and magnetics, could be regarded as “catalytic cues” which can accelerate the “synthetic reactions” by precisely and effectively manipulating a series of cell behaviors including cell adhesion, migration, growth, proliferation, differentiation, cell–cell interaction, and cell–matrix interaction to reduce activation energy of the “synthetic reactions”. Thus, on the microfluidics platform, the “biofactory”, various “synthetic” reactions take place to change the substrate materials (cells and ECM) into products (tissues) in a nonlinear way, which is a typical feature of a biological process. By precisely organizing the substrate materials and spatiotemporally controlling the activity of the products, as a “biofactory”, the microfluidics system can not only “synthesize” living tissues but also recreate physiological or pathophysiological processes such as immune responses, angiogenesis, wound healing, and tumor metastasis in vitro to bring insights into the mechanisms underlying these processes taking place in vivo.

中文翻译:

用微流体合成活组织

在天然组织中,各种细胞类型以高度调节的方式组织和时空起作用,并与邻近或远处的细胞通信。我们如何在体外复制这些惊人的功能结构?从化学家的角度来看,异质细胞和细胞外基质(ECM)可被视为组织工程过程中“合成”反应的各种化学底物材料。但是,我们如何才能加快这些反应呢?微流体技术提供了理想的解决方案。可以将微流体比喻为微型“生物工厂”,而芯片上的关键化学线索(例如生物分子梯度)和物理线索(例如几何限制,拓扑指导和机械刺激)以及外部刺激(例如光,电,声学和磁学可以被视为“催化线索”,可以通过精确而有效地操纵一系列细胞行为来加速“合成反应”,这些行为包括细胞粘附,迁移,生长,增殖,分化,细胞-细胞相互作用和细胞-基质相互作用,以减少“合成反应”的活化能。因此,在微流体平台上,“生物工厂”发生了各种“合成”反应,以非线性方式将底物材料(细胞和ECM)改变为产品(组织),这是生物过程的典型特征。作为“生物工厂”,通过精确地组织底物材料并在时空上控制产品的活性,微流体系统不仅可以“合成”活组织,而且还可以重建生理或病理生理过程,例如免疫反应,血管生成,伤口愈合和肿瘤转移 发生各种“合成”反应,以非线性方式将底物材料(细胞和ECM)转变为产品(组织),这是生物过程的典型特征。作为“生物工厂”,通过精确地组织底物材料并在时空上控制产品的活性,微流体系统不仅可以“合成”活组织,而且还可以重建生理或病理生理过程,例如免疫反应,血管生成,伤口愈合和肿瘤转移 发生各种“合成”反应,以非线性方式将底物材料(细胞和ECM)转变为产品(组织),这是生物过程的典型特征。作为“生物工厂”,通过精确地组织底物材料并在时空上控制产品的活性,微流体系统不仅可以“合成”活组织,而且还可以重建生理或病理生理过程,例如免疫反应,血管生成,伤口愈合和肿瘤转移在体外进行深入了解这些发生在体内的潜在机制。
更新日期:2018-11-20
down
wechat
bug