当前位置: X-MOL 学术Faraday Discuss. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons
Faraday Discussions ( IF 3.3 ) Pub Date : 2018-11-15 , DOI: 10.1039/c8fd00148k
Aveek Dutta 1, 2, 2, 3, 4 , Alberto Naldoni 5, 6, 7 , Francesco Malara 8, 9, 10 , Alexander O. Govorov 11, 12, 13, 14, 15 , Vladimir M. Shalaev 1, 2, 2, 3, 4 , Alexandra Boltasseva 1, 2, 2, 3, 4
Affiliation  

Hydrogen is a promising alternative renewable fuel for meeting the growing energy demands of the world. Over the past few decades, photoelectrochemical water splitting has been widely studied as a viable technology for the production of hydrogen utilizing solar energy. A solar-to-hydrogen (STH) efficiency of 10% is considered to be sufficient for practical applications. Amongst the wide class of semiconductors that have been studied for their application in solar water splitting, iron oxide (α-Fe2O3), or hematite, is one of the more promising candidate materials, with a theoretical STH efficiency of 15%. In this work, we show experimentally that by utilizing gold nanostructures that support gap-plasmon resonances together with a hematite layer, we can increase the water oxidation photocurrent by two times over that demonstrated by a bare hematite film at wavelengths above the hematite bandgap. Moreover, we achieve a six-fold increase in the oxidation photocurrent at near-infrared wavelengths, which is attributed to hot electron generation and decay in the gap-plasmon nanostructures. Theoretical simulations confirmed that the metamaterial geometry with gap plasmons that was used allows us to confine electromagnetic fields inside the hematite semiconductor and to enhance the surface photochemistry.

中文翻译:

间隙等离子体激元增强超薄赤铁矿膜的水分解:基于等离子体的光阱和热电子的作用

氢是一种有前途的替代可再生燃料,可以满足世界日益增长的能源需求。在过去的几十年中,光电化学水分解作为一种利用太阳能生产氢的可行技术得到了广泛的研究。实际应用中,太阳能到氢(STH)的效率为10%就足够了。之间的宽类半导体的已研究了它们在太阳能水分解,氧化铁应用(的α-Fe 2 ö 3),即赤铁矿,是最有前途的候选材料之一,理论上的STH效率为15%。在这项工作中,我们通过实验证明,利用支持间隙等离子体激元共振的金纳米结构以及赤铁矿层,我们可以使水氧化光电流比赤铁矿带隙以上波长的裸赤铁矿膜所显示的水氧化光电流增加两倍。此外,我们在近红外波长处实现了氧化光电流的六倍增长,这归因于热电子的产生和间隙等离子体激元纳米结构的衰减。理论模拟证实,所使用的具有间隙等离子体激元的超材料几何形状使我们能够将电磁场限制在赤铁矿半导体内部并增强表面光化学。
更新日期:2019-05-29
down
wechat
bug