当前位置: X-MOL 学术IEEE Trans. Pattern Anal. Mach. Intell. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust Kronecker Component Analysis
IEEE Transactions on Pattern Analysis and Machine Intelligence ( IF 23.6 ) Pub Date : 2018-11-15 , DOI: 10.1109/tpami.2018.2881476
Mehdi Bahri , Yannis Panagakis , Stefanos Zafeiriou

Dictionary learning and component analysis models are fundamental for learning compact representations that are relevant to a given task (feature extraction, dimensionality reduction, denoising, etc.). The model complexity is encoded by means of specific structure, such as sparsity, low-rankness, or nonnegativity. Unfortunately, approaches like K-SVD - that learn dictionaries for sparse coding via Singular Value Decomposition (SVD) - are hard to scale to high-volume and high-dimensional visual data, and fragile in the presence of outliers. Conversely, robust component analysis methods such as the Robust Principal Component Analysis (RPCA) are able to recover low-complexity (e.g., low-rank) representations from data corrupted with noise of unknown magnitude and support, but do not provide a dictionary that respects the structure of the data (e.g., images), and also involve expensive computations. In this paper, we propose a novel Kronecker-decomposable component analysis model, coined as Robust Kronecker Component Analysis (RKCA), that combines ideas from sparse dictionary learning and robust component analysis. RKCA has several appealing properties, including robustness to gross corruption; it can be used for low-rank modeling, and leverages separability to solve significantly smaller problems. We design an efficient learning algorithm by drawing links with a restricted form of tensor factorization, and analyze its optimality and low-rankness properties. The effectiveness of the proposed approach is demonstrated on real-world applications, namely background subtraction and image denoising and completion, by performing a thorough comparison with the current state of the art.

中文翻译:

鲁棒的克罗内克分量分析

词典学习和组件分析模型是学习与给定任务(特征提取,降维,降噪等)相关的紧凑表示形式的基础。模型的复杂性通过特定的结构进行编码,例如稀疏性,低秩或非负性。不幸的是,像K-SVD这样的方法-通过奇异值分解(SVD)学习字典以进行稀疏编码-很难扩展到大容量和高维的可视数据,并且在存在异常值时非常脆弱。相反,诸如鲁棒主成分分析(RPCA)之类的鲁棒成分分析方法能够从因未知大小和支持的噪声而损坏的数据中恢复低复杂度(例如,低秩)表示,但不能提供尊重以下方面的词典:数据的结构(例如,图片),并且还涉及昂贵的计算。在本文中,我们提出了一种新颖的Kronecker可分解组件分析模型,该模型被称为Robust Kronecker组件分析(RKCA),它结合了稀疏词典学习和鲁棒组件分析的思想。RKCA具有几个吸引人的属性,包括对严重腐败的鲁棒性;它可用于低等级建模,并利用可分离性解决较小的问题。我们通过绘制具有受限形式的张量分解的链接来设计一种有效的学习算法,并分析其最优性和低秩性质。通过与现有技术进行全面比较,在实际应用中证明了所提出方法的有效性,即背景扣除和图像降噪与完成。并且涉及昂贵的计算。在本文中,我们提出了一种新颖的Kronecker可分解组件分析模型,该模型被称为Robust Kronecker组件分析(RKCA),它结合了稀疏词典学习和鲁棒组件分析的思想。RKCA具有几个吸引人的属性,包括对严重腐败的鲁棒性;它可用于低等级建模,并利用可分离性解决较小的问题。我们通过绘制具有受限形式的张量分解的链接来设计一种有效的学习算法,并分析其最优性和低秩性质。通过与现有技术进行全面比较,在实际应用中证明了所提出方法的有效性,即背景扣除和图像降噪与完成。并且涉及昂贵的计算。在本文中,我们提出了一种新颖的Kronecker可分解组件分析模型,该模型被称为Robust Kronecker组件分析(RKCA),它结合了稀疏词典学习和鲁棒组件分析的思想。RKCA具有几个吸引人的属性,包括对严重腐败的鲁棒性;它可用于低等级建模,并利用可分离性解决较小的问题。我们通过绘制具有受限形式的张量分解的链接来设计一种有效的学习算法,并分析其最优性和低秩性质。通过与现有技术进行全面比较,在实际应用中证明了所提出方法的有效性,即背景扣除和图像降噪与完成。
更新日期:2019-09-06
down
wechat
bug