当前位置: X-MOL 学术J. Nucl. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization of surface layers formed on DU10Mo ingots after processing steps and high humidity exposure
Journal of Nuclear Materials ( IF 3.1 ) Pub Date : 2018-11-14 , DOI: 10.1016/j.jnucmat.2018.11.022
Tiffany C. Kaspar , Christina L. Arendt , Derek L. Neal , Shawn L. Riechers , Crystal Rutherford , Alan Schemer-Kohrn , Steven R. Spurgeon , Lucas E. Sweet , Vineet V. Joshi , Curt A. Lavender , Rick W. Shimskey

The design of monolithic UMo fuel elements fabricated from low-enriched uranium for use in high-power research reactors requires bonding of the fuel foil to either Al cladding or a Zr barrier layer. Processing of the UMo ingot to final foil form has the potential to generate surface layers on the foil that differ from the bulk, metallic UMo. The interfacial properties between the UMo and Zr or Al cladding layers will then be determined by these surface layers. We use x-ray photoelectron spectroscopy, cross-sectional scanning electron microscopy, and atomic force microscopy to characterize the composition, oxidation state, and morphology of the surface layers that form after hot rolling and cold rolling depleted U–10 wt% Mo alloy (DU10Mo). A thick uranium nitride layer is observed after hot rolling, although its origin is likely from a previous processing step. The efficacy of acid etching in HNO3 is compared to that of electropolishing in H2SO4 to remove surface nitride and oxide layers, and both methods are found to be similarly effective. Both laboratory (low humidity) air exposure and longer rinse times in water are shown to promote the formation of surface oxide layers. Exposure of both acid-etched and electropolished DU10Mo foils to humid air (97% relative humidity) for six weeks results in formation of a thick oxide layer due to corrosion. The oxide layer on the acid-etched foil is thicker and more highly oxidized than the oxide layer that forms on the electropolished foil, and these differences in oxidation behavior are attributed to higher surface roughness on the acid-etched foil. In general, Mo is found to play a role as a sacrificial element, typically exhibiting a larger ratio of Mo6+/Mo4+ than U6+/U4+. This is unexpected, given the greater thermodynamic driving force to form U oxides than Mo oxides.



中文翻译:

经过加工步骤和高湿度暴露后在DU10Mo铸锭上形成的表面层的表征

用于低功率铀的大功率研究反应堆用低浓铀制成的整体式U Mo燃料元件的设计要求将燃料箔结合到Al覆层或Zr阻挡层上。将U Mo锭加工成最终的箔片的形式有可能在箔片上生成不同于块状金属U Mo的表面层。U之间的界面特性然后,Mo和Zr或Al包层将由这些表面层确定。我们使用X射线光电子能谱,截面扫描电子显微镜和原子力显微镜来表征热轧和冷轧后消耗的U-10 wt%Mo合金后形成的表面层的组成,氧化态和形态( DU10Mo)。在热轧后观察到了厚的氮化铀层,尽管其来源很可能来自先前的加工步骤。将HNO 3中酸蚀刻的功效与H 2 SO 4中电抛光的功效进行了比较去除表面氮化物和氧化物层,发现这两种方法都具有类似的效果。实验室(低湿度)空气暴露和在水中较长的漂洗时间均显示出促进表面氧化物层形成的作用。酸蚀和电抛光的DU10Mo箔在潮湿空气(相对湿度为97%)中暴露六周,会由于腐蚀而形成厚的氧化层。酸蚀箔上的氧化物层比电抛光箔上形成的氧化物层更厚,氧化程度更高,这些氧化行为的差异归因于酸蚀箔上较高的表面粗糙度。通常,发现Mo起到牺牲元素的作用,通常比U 6+表现出更大的Mo 6+ / Mo 4+比。/ U 4+。鉴于形成U氧化物的热力学驱动力大于Mo氧化物,这是出乎意料的。

更新日期:2018-11-14
down
wechat
bug