当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magneto-ionic control of magnetism using a solid-state proton pump
Nature Materials ( IF 37.2 ) Pub Date : 2018-11-12 , DOI: 10.1038/s41563-018-0211-5
Aik Jun Tan , Mantao Huang , Can Onur Avci , Felix Büttner , Maxwell Mann , Wen Hu , Claudio Mazzoli , Stuart Wilkins , Harry L. Tuller , Geoffrey S. D. Beach

Voltage-gated ion transport as a means of manipulating magnetism electrically could enable ultralow-power memory, logic and sensor technologies. Earlier work made use of electric-field-driven O2− displacement to modulate magnetism in thin films by controlling interfacial or bulk oxidation states. However, elevated temperatures are required and chemical and structural changes lead to irreversibility and device degradation. Here we show reversible and non-destructive toggling of magnetic anisotropy at room temperature using a small gate voltage through H+ pumping in all-solid-state heterostructures. We achieve 90° magnetization switching by H+ insertion at a Co/GdOx interface, with no degradation in magnetic properties after >2,000 cycles. We then demonstrate reversible anisotropy gating by hydrogen loading in Pd/Co/Pd heterostructures, making metal–metal interfaces susceptible to voltage control. The hydrogen storage metals Pd and Pt are high spin–orbit coupling materials commonly used to generate perpendicular magnetic anisotropy, Dzyaloshinskii–Moriya interaction, and spin–orbit torques in ferromagnet/heavy-metal heterostructures. Thus, our work provides a platform for voltage-controlled spin–orbitronics.



中文翻译:

使用固态质子泵的磁离子控制

电压门控离子传输作为一种以电磁方式操纵磁场的方法,可以实现超低功耗的存储器,逻辑和传感器技术。较早的工作是利用电场驱动的O 2−位移通过控制界面或本体氧化态来调节薄膜中的磁性。但是,需要高温,化学和结构变化会导致不可逆性和器件性能下降。在这里,我们显示了在室温下通过全固态异质结构中通过H +抽运而使用的较小栅极电压可逆和无损地切换磁各向异性的情况。我们通过在Co / GdO x处插入H +来实现90°磁化切换界面,> 2,000次循环后磁性能不会降低。然后,我们证明了氢在Pd / Co / Pd异质结构中的氢负载可逆各向异性门控,使金属-金属界面易受电压控制。储氢金属Pd和Pt是高自旋轨道耦合材料,通常用于在铁磁体/重金属异质结构中产生垂直磁各向异性,Dzyaloshinskii-Moriya相互作用以及自旋轨道转矩。因此,我们的工作为电压控制自旋Orbitronics提供了一个平台。

更新日期:2018-12-10
down
wechat
bug