当前位置: X-MOL 学术ACS Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Mannitol Biosynthesis in Escherichia coli and Synechococcus sp. PCC 7002 Using a Green Algal Fusion Protein
ACS Synthetic Biology ( IF 3.7 ) Pub Date : 2018-11-08 00:00:00 , DOI: 10.1021/acssynbio.8b00238
Mary Ann Madsen 1 , Stefan Semerdzhiev 1 , Anna Amtmann 1 , Thierry Tonon 2
Affiliation  

The genetic engineering of microbial cell factories is a sustainable alternative to the chemical synthesis of organic compounds. Successful metabolic engineering often depends on manipulating several enzymes, requiring multiple transformation steps and selection markers, as well as protein assembly and efficient substrate channeling. Naturally occurring fusion genes encoding two or more enzymatic functions may offer an opportunity to simplify the engineering process and to generate ready-made protein modules, but their functionality in heterologous systems remains to be tested. Here we show that heterologous expression of a fusion enzyme from the marine alga Micromonas pusilla, comprising a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase, leads to synthesis of mannitol by Escherichia coli and by the cyanobacterium Synechococcus sp. PCC 7002. Neither of the heterologous systems naturally produce this sugar alcohol, which is widely used in food, pharmaceutical, medical, and chemical industries. While the mannitol production rates obtained by single-gene manipulation were lower than those previously achieved after pathway optimization with multiple genes, our findings show that naturally occurring fusion proteins can offer simple building blocks for the assembly and optimization of recombinant metabolic pathways.

中文翻译:

大肠杆菌Synocococcus sp。中的工程甘露醇生物合成。使用绿色藻类融合蛋白的PCC 7002

微生物细胞工厂的基因工程是有机化合物化学合成的可持续替代方法。成功的代谢工程通常取决于操纵几种酶,需要多个转化步骤和选择标记,以及蛋白质组装和有效的底物通道。天然存在的编码两个或多个酶功能的融合基因可能为简化工程过程和生成现成的蛋白质模块提供了机会,但它们在异源系统中的功能仍有待测试。在这里,我们显示了来自海藻微单胞菌融合蛋白的融合酶的异源表达,其包括甘露醇-1-磷酸脱氢酶和甘露醇-1-磷酸酶,导致通过合成甘露醇大肠杆菌和由蓝细菌Synechococcus sp。PCC7002。这两种异源系统都不自然产生这种糖醇,这种糖醇广泛用于食品,制药,医疗和化学工业。尽管通过单基因操作获得的甘露醇产率低于使用多个基因进行途径优化后获得的甘露醇产率,但我们的发现表明,天然存在的融合蛋白可以为重组和重组代谢途径的构建提供简单的基础。
更新日期:2018-11-08
down
wechat
bug