当前位置: X-MOL 学术Prog. Photovoltaics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comprehensive electrical loss analysis of monolithic interconnected multi‐segment laser power converters
Progress in Photovoltaics ( IF 8.0 ) Pub Date : 2018-11-08 , DOI: 10.1002/pip.3075
Rok Kimovec 1, 2 , Henning Helmers 2 , Andreas W. Bett 2 , Marko Topič 1
Affiliation  

A method for distributed electrical modeling of complete photovoltaic monolithic interconnected modules (MIMs) with complex geometrical and electrical features is developed and applied to study electrical power losses of a six‐segment GaAs‐based MIM laser power converter (LPC). The model considers spatial dependence of resistive and recombination losses of all epitaxial layers and explicitly takes into account perimeter recombination and the photo‐induced leakage current through the semi‐insulating GaAs substrate. The investigated specimen was fully parametrized to obtain the model's input parameters which were verified by a comparison of a variety of simulated and measured specimen's electrical characteristics. Based on simulations, we show that distributed series resistance effects, mainly caused by Joule heating in the lateral conduction layer (LCL), limit the efficiency of MIM LPCs under a high irradiance illumination, whereas for a low irradiance illumination perimeter recombination is identified as the limiting factor. Additionally, photo‐induced conductivity leads to a reciprocal relationship between irradiance and substrate resistivity, which results in a parasitic shunting between segments and reduces the device efficiency. We present mitigation strategies for the outlined major loss mechanisms and propose a thin‐film cell employing a metal back mirror that exploits photon recycling and mitigates LCL losses. With such MIM LPC design, conversion efficiencies above 60% can be reached for a broad irradiance range.

中文翻译:

单片互连多段激光功率转换器的综合电损耗分析

开发了一种具有复杂几何和电气特性的完整光伏单片互连模块(MIM)的分布式电气建模方法,并将其应用于研究六段基于GaAs的MIM激光功率转换器(LPC)的电功率损耗。该模型考虑了所有外延层的电阻和复合损耗的空间依赖性,并明确考虑了周边复合和通过半绝缘GaAs衬底的光致泄漏电流。对所研究的样品进行完全参数化,以获得模型的输入参数,这些参数通过比较各种模拟和测量的样品的电气特性进行了验证。基于仿真,我们证明了分布串联电阻效应,主要由横向传导层(LCL)中的焦耳加热引起的,限制了高辐照度下MIM LPC的效率,而对于低辐照度,周界重组被认为是限制因素。此外,光诱导的电导率会导致辐照度与衬底电阻率之间存在相互关系,从而导致各段之间发生寄生分流并降低器件效率。我们提出了概述的主要损失机制的缓解策略,并提出了一种采用金属后视镜的薄膜电池,该金属后视镜可利用光子回收利用并减轻LCL损失。通过这种MIM LPC设计,可以在较宽的辐照范围内达到60%以上的转换效率。而对于低辐照度,周界重组被认为是限制因素。此外,光诱导的电导率会导致辐照度与衬底电阻率之间存在相互关系,从而导致各段之间发生寄生分流并降低器件效率。我们提出了概述的主要损失机制的缓解策略,并提出了一种采用金属后视镜的薄膜电池,该金属后视镜可利用光子回收利用并减轻LCL损失。通过这种MIM LPC设计,可以在较宽的辐照范围内达到60%以上的转换效率。而对于低辐照度,周界重组被认为是限制因素。此外,光诱导的电导率会导致辐照度与衬底电阻率之间存在相互关系,从而导致各段之间发生寄生分流并降低器件效率。我们提出了概述的主要损失机制的缓解策略,并提出了一种采用金属后视镜的薄膜电池,该金属后视镜可利用光子回收利用并减轻LCL损失。通过这种MIM LPC设计,可以在较宽的辐照范围内达到60%以上的转换效率。这会导致段之间的寄生分流并降低器件效率。我们提出了概述的主要损失机制的缓解策略,并提出了一种采用金属后视镜的薄膜电池,该金属后视镜可利用光子回收并减轻LCL损失。通过这种MIM LPC设计,可以在较宽的辐照范围内达到60%以上的转换效率。这导致段之间的寄生分流并降低了器件效率。我们提出了概述的主要损失机制的缓解策略,并提出了一种采用金属后视镜的薄膜电池,该金属后视镜可利用光子回收利用并减轻LCL损失。通过这种MIM LPC设计,可以在较宽的辐照范围内达到60%以上的转换效率。
更新日期:2018-11-08
down
wechat
bug