当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transistor configuration yields energy level control in protein-based junctions†
Nanoscale ( IF 5.8 ) Pub Date : 2018-11-07 00:00:00 , DOI: 10.1039/c8nr06627b
Ben Kayser 1, 2, 3, 4 , Jerry A. Fereiro 1, 2, 3, 4 , Cunlan Guo 2, 3, 4, 5 , Sidney R. Cohen 2, 3, 4, 6 , Mordechai Sheves 2, 3, 4, 5 , Israel Pecht 2, 3, 4, 7 , David Cahen 1, 2, 3, 4
Affiliation  

The incorporation of proteins as functional components in electronic junctions has received much interest recently due to their diverse bio-chemical and physical properties. However, information regarding the energies of the frontier orbitals involved in their electron transport (ETp) has remained elusive. Here we employ a new method to quantitatively determine the energy position of the molecular orbital, nearest to the Fermi level (EF) of the electrode, in the electron transfer protein Azurin. The importance of the Cu(II) redox center of Azurin is demonstrated by measuring gate-controlled conductance switching which is absent if Azurin's copper ions are removed. Comparing different electrode materials, a higher conductance and a lower gate-induced current onset is observed for the material with smaller work function, indicating that ETp via Azurin is LUMO-mediated. We use the difference in work function to calibrate the difference in gate-induced current onset for the two electrode materials, to a specific energy level shift and find that ETp via Azurin is near resonance. Our results provide a basis for mapping and studying the role of energy level positions in (bio)molecular junctions.

中文翻译:

晶体管配置可在基于蛋白质的结点中实现能级控制

最近,由于蛋白质具有多种生物化学和物理特性,因此将蛋白质作为功能性成分掺入电子连接中已引起了广泛的关注。但是,有关其电子传输(ETp)中涉及的前沿轨道能量的信息仍然难以捉摸。在这里,我们采用一种新方法来定量确定电子转移蛋白天青素中最接近电极费米能级(E F)的分子轨道的能量位置。铜的(重要性II)通过测量栅极控制的电导率开关来演示Azurin的氧化还原中心,如果去除了Azurin的铜离子,则不会出现这种情况。比较不同的电极材料,对于功函数较小的材料,观察到较高的电导率和较低的栅极感应电流开始,这表明通过天青素的ETp是LUMO介导的。我们使用的不同的功函数来校准门感应电流发作的区别两个电极材料,到特定的能级位移和发现ETP通过阿苏林是近共振。我们的结果为映射和研究能级位置在(生物)分子连接中的作用提供了基础。
更新日期:2018-11-07
down
wechat
bug