当前位置: X-MOL 学术Prog. Photovoltaics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing a hybrid thin‐film/wafer silicon triple photovoltaic junction for solar water splitting
Progress in Photovoltaics ( IF 8.0 ) Pub Date : 2018-11-05 , DOI: 10.1002/pip.3085
Paula Perez-Rodriguez 1 , Wouter Vijselaar 2 , Jurriaan Huskens 2 , Machiel Stam 1 , Michael Falkenberg 1, 3 , Miro Zeman 1 , Wilson Smith 4 , Arno H.M. Smets 1
Affiliation  

Solar fuels are a promising way to store solar energy seasonally. This paper proposes an earth‐abundant heterostructure to split water using a photovoltaic‐electrochemical device (PV‐EC). The heterostructure is based on a hybrid architecture of a thin‐film (TF) silicon tandem on top of a c‐Si wafer (W) heterojunction solar cell (a‐Si:H (TF)/nc‐Si:H (TF)/c‐Si(W)) The multijunction approach allows to reach enough photovoltage for water splitting, while maximizing the spectrum utilization. However, this unique approach also poses challenges, including the design of effective tunneling recombination junctions (TRJ) and the light management of the cell. Regarding the TRJs, the solar cell performance is improved by increasing the n‐layer doping of the middle cell. The light management can be improved by using hydrogenated indium oxide (IOH) as transparent conductive oxide (TCO). Finally, other light management techniques such as substrate texturing or absorber bandgap engineering were applied to enhance the current density. A correlation was observed between improvements in light management by conventional surface texturing and a reduced nc‐Si:H absorber material quality. The final cell developed in this work is a flat structure, using a top absorber layer consisting of a high bandgap a‐Si:H. This triple junction cell achieved a PV efficiency of 10.57%, with a fill factor of 0.60, an open‐circuit voltage of 2.03 V and a short‐circuit current density of 8.65 mA/cm2. When this cell was connected to an IrOx/Pt electrolyser, a stable solar‐to‐hydrogen (STH) efficiency of 8.3% was achieved and maintained for 10 hours.

中文翻译:

设计用于太阳能水分解的混合薄膜/硅晶圆三层光伏结

太阳能是季节性存储太阳能的一种有前途的方式。本文提出了一种利用光伏电化学装置(PV-EC)分解水的富地球异质结构。异质结构基于ac-Si晶片(W)异质结太阳能电池(a-Si:H(TF)/ nc-Si:H(TF)/ c‐Si(W))多结方法允许达到足够的光电压以进行水分解,同时最大程度地利用频谱。然而,这种独特的方法也带来了挑战,包括有效的隧穿重组结(TRJ)的设计和电池的光管理。关于TRJ,通过增加中间电池的n层掺杂可以提高太阳能电池的性能。通过使用氢化氧化铟(IOH)作为透明导电氧化物(TCO)可以改善光管理。最后,还应用了其他光管理技术,例如基板纹理化或吸收带隙工程,以提高电流密度。观察到常规表面纹理化在光管理方面的改进与nc-Si:H吸收剂材料质量的下降之间存在相关性。在这项工作中开发的最终电池是扁平结构,使用由高带隙a-Si:H组成的顶部吸收层。这种三结电池的PV效率为10.57%,填充系数为0.60,开路电压为2.03 V,短路电流密度为8.65 mA / cm 其他光管理技术(例如衬底纹理化或吸收带隙工程)也被应用来增强电流密度。观察到常规表面纹理化在光管理方面的改进与nc-Si:H吸收剂材料质量的下降之间存在相关性。在这项工作中开发的最终电池是扁平结构,使用由高带隙a-Si:H组成的顶部吸收层。这种三结电池的PV效率为10.57%,填充系数为0.60,开路电压为2.03 V,短路电流密度为8.65 mA / cm 其他光管理技术(例如衬底纹理化或吸收带隙工程)也被应用来增强电流密度。观察到常规表面纹理化在光管理方面的改进与nc-Si:H吸收剂材料质量的下降之间存在相关性。在这项工作中开发的最终电池是扁平结构,使用由高带隙a-Si:H组成的顶部吸收层。这种三结电池的PV效率为10.57%,填充系数为0.60,开路电压为2.03 V,短路电流密度为8.65 mA / cm 使用由高带隙a-Si:H组成的顶部吸收层。这种三结电池的PV效率为10.57%,填充系数为0.60,开路电压为2.03 V,短路电流密度为8.65 mA / cm 使用由高带隙a-Si:H组成的顶部吸收层。这种三结电池的PV效率为10.57%,填充系数为0.60,开路电压为2.03 V,短路电流密度为8.65 mA / cm2。当该电池连接到IrO x / Pt电解槽时,可实现8.3%的稳定的太阳能-氢(STH)效率,并保持10个小时。
更新日期:2018-11-05
down
wechat
bug