当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mathematical model for coal conversion in supercritical water: reacting multiphase flow with conjugate heat transfer
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2018-10-20 , DOI: 10.1016/j.ijhydene.2018.09.139
Zhisong Ou , Hui Jin , Zhenhua Ren , Shixing Zhu , Mengmeng Song , Liejin Guo

Providing heat for supercritical water gasification (SCWG) of coal by coupling subsequent products oxidation in integrated supercritical water reactor (ISWR) provides an effective method for directional control of temperature field and avoids excessive hot spots caused by uniform heating. An exploratory numerical model incorporating particle-fluid flow dynamics, multispecies transport and thermal coupling between endothermic coal gasification and exothermic product oxidation was established to simulate the reacting multiphase flow process of coal conversion in a novel lab-scale ISWR. An eleven-lump kinetic model was proposed for the prediction of chemical reactions. And the thermal coupling relationship was described by conjugate heat transfer boundary conditions (BC). Detailed physical and chemical field distribution in ISWR were analyzed and influence factors were discussed. The results showed that oxidation of gas products as inner heat source could promote the gasification reaction with only slight or even little maximum temperature increase of the pressure-bearing wall. Coal feeding rate and oxygen supply method significantly affected the field distribution. The multi-injection compressed-air supply method provided a more uniform temperature field but would reduce heat transfer temperature difference. The carbon gasification efficiency (CGE) in the gasification zone could easily reach up to 97% under mild conditions (less than 650 °C).



中文翻译:

超临界水中煤转化的数学模型:多相流与共轭传热反应

通过在集成的超临界水反应堆(ISWR)中耦合后续产物的氧化作用为煤的超临界水气化(SCWG)提供热量,提供了一种有效的方向控制温度场的方法,并避免了因均匀加热而产生的过多热点。建立了一个探索性的数值模型,该模型结合了颗粒-流体流动动力学,多物种迁移以及吸热煤气化和放热产物氧化之间的热耦合,以模拟新型实验室规模的ISWR中煤转化的反应性多相流过程。提出了一种十一集动力学模型来预测化学反应。通过共轭传热边界条件(BC)描述了热耦合关系。分析了ISWR中详细的物理和化学场分布,并讨论了影响因素。结果表明,气体产物作为内部热源的氧化可以促进气化反应,而承压壁的最高温度仅升高甚至不升高。输煤速率和供氧方式显着影响了田间分布。多喷射压缩空气供应方法提供了更均匀的温度场,但会减小传热温度差。在温和条件下(低于650°C),气化区的碳气化效率(CGE)可以轻松达到97%。结果表明,气体产物作为内部热源的氧化可以促进气化反应,而承压壁的最高温度仅升高甚至不升高。输煤速率和供氧方式显着影响了田间分布。多次喷射压缩空气供应方法提供了更均匀的温度场,但会减小传热温度差。在温和条件下(低于650°C),气化区的碳气化效率(CGE)可以轻松达到97%。结果表明,气体产物作为内部热源的氧化可以促进气化反应,而承压壁的最高温度仅升高甚至不升高。输煤速率和供氧方式显着影响了田间分布。多次喷射压缩空气供应方法提供了更均匀的温度场,但会减小传热温度差。在温和条件下(低于650°C),气化区的碳气化效率(CGE)可以轻松达到97%。多次喷射压缩空气供应方法提供了更均匀的温度场,但会减小传热温度差。在温和条件下(低于650°C),气化区的碳气化效率(CGE)可以轻松达到97%。多喷射压缩空气供应方法提供了更均匀的温度场,但会减小传热温度差。在温和条件下(低于650°C),气化区的碳气化效率(CGE)可以轻松达到97%。

更新日期:2018-10-20
down
wechat
bug