当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries
Nano Energy ( IF 16.8 ) Pub Date : 2018-10-18 , DOI: 10.1016/j.nanoen.2018.10.027
Wensheng Ma , Kuibo Yin , Hui Gao , Jiazheng Niu , Zhangquan Peng , Zhonghua Zhang

Developing advanced electrode materials and understanding their reaction mechanisms are two crucial issues for development of high-performance sodium ion batteries (SIBs). Herein, we synthesized a bimetallic single-phase nanoporous (NP) SnSb alloy with a bicontinuous ligament-channel structure through elaborate design of ternary Mg-Sn-Sb precursor and chemical dealloying. As an anode for SIBs, the NP-SnSb alloy delivers high specific capacity, excellent cycling stability (506.6 mAh g−1 after 100 cycles at 0.2 A g−1; 457.9 mAh g−1 after 150 cycles at 1.0 A g−1) and superior rate capability (458.2 mAh g−1 at 10 A g−1). Moreover, the Na3V2(PO4)3 (cathode)/NP-SnSb (anode) full cell also exhibits outstanding electrochemical performance (cycling stability and rate capability). The unique nanoporous structure (with ligaments of 38.9 ± 7.3 nm), the alloying effect and the synergetic reaction of Sn/Sb account for the eminent electrochemical properties of NP-SnSb. Most importantly, the Na storage mechanism of SnSb alloy was revealed using operando X-ray diffraction and density functional theory calculations. Rather than separate reactions of Sn and Sb, the reaction of SnSb alloy proceeds through a synergetic sodiation/desodiation process via the mechanism: SnSb (crystalline) ↔ Na(Sn,Sb) (amorphous) ↔ Na9(Sn,Sb)4 (amorphous/low-crystalline) ↔ Na15(Sn,Sb)4 (crystalline).



中文翻译:

合金化可提高钠离子电池纳米多孔锡锑合金阳极中优异的钠存储性能

开发高级电极材料并了解其反应机理是开发高性能钠离子电池(SIB)的两个关键问题。在此,我们通过精心设计三元Mg-Sn-Sb前驱体并进行化学脱合金,合成了具有双连续韧带通道结构的双金属单相纳米多孔(SnSb)SnSb合金。作为SIB的阳极时,NP-SnSb系合金提供高的比容量,优异的循环稳定性(506.6毫安克-1,在100次循环后0.2 A克-1 ; 457.9毫安克-1在1.0克150次循环后-1)和优异的倍率性能(458.2毫安克-1以10 A G -1)。此外,Na 3 V 2(PO 43(阴极)/ NP-SnSb(阳极)全电池也表现出出色的电化学性能(循环稳定性和速率能力)。独特的纳米孔结构(38.9±7.3 nm韧带),Sn / Sb的合金化作用和协同反应说明了NP-SnSb的卓越电化学性能。最重要的是,使用操作X射线衍射和密度泛函理论计算揭示了SnSb合金的Na储存机理。SnSb合金不是通过Sn和Sb的单独反应,而是通过以下机制通过协同的增盐/脱碱过程进行反应:SnSb(晶体)↔Na(Sn,Sb)(非晶)↔Na 9(Sn,Sb)4(非晶/低结晶))Na 15(Sn,Sb)4(结晶)。

更新日期:2018-10-18
down
wechat
bug