当前位置: X-MOL 学术Int. J. Greenh. Gas. Con. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings
International Journal of Greenhouse Gas Control ( IF 3.9 ) Pub Date : 2018-10-17 , DOI: 10.1016/j.ijggc.2018.09.015
Connor C. Turvey , Siobhan A. Wilson , Jessica L. Hamilton , Alastair W. Tait , Jenine McCutcheon , Andreas Beinlich , Stewart J. Fallon , Gregory M. Dipple , Gordon Southam

Carbon mineralisation of ultramafic mine tailings can reduce net emissions of anthropogenic carbon dioxide by reacting Mg-silicate and hydroxide minerals with atmospheric CO2 to produce carbonate minerals. We investigate the controls on carbonate mineral formation at the derelict Woodsreef chrysotile mine (New South Wales, Australia). Quantitative XRD was used to understand how mineralogy changes with depth into the tailings pile, and shows that hydromagnesite [Mg5(CO3)4(OH)2·4H2O], is present in shallow tailings material (<40 cm), while coalingite [Mg10Fe3+2(CO3)(OH)24·2H2O] and pyroaurite [Mg6Fe3+2(CO3)(OH)16·4H2O] are forming deeper in the tailings material. This indicates that there may be two geochemical environments within the upper ∼1 m of the tailings, with hydromagnesite forming within the shallow tailings via carbonation of brucite in CO2-rich conditions, and pyroaurite and coalingite forming under more carbon limited conditions at depth. Radiogenic isotope results indicate hydromagnesite and pyroaurite have a modern (F14C > 0.8) atmospheric CO2 source. Laboratory-based anion exchange experiments, conducted to explore stable C isotope fractionation in pyroaurite, shows that pyroaurite δ13C values change with carbon availability, and 13C-depleted signatures are typical of hydrotalcites in C-limited environments, such as the deep tailings at Woodsreef. Quantitative XRD and elemental C data estimates that Woodsreef absorbs between of 229.0–405.1 g CO2 m−2 y−1.



中文翻译:

来自澳大利亚新南威尔士州Woodsreef温石棉矿的蛇纹石矿物废料中作为碳汇的水滑石和水合碳酸镁:对尾矿中碳酸盐矿物学和CO 2空气捕集效率的控制

超镁铁矿尾矿的碳矿化可通过使硅酸镁和氢氧化镁矿物与大气CO 2反应生成碳酸盐矿物,从而减少人为二氧化碳的净排放量。我们调查了废弃的Woodsreef温石棉矿(澳大利亚新南威尔士州)对碳酸盐矿物形成的控制。X射线定量分析用于了解矿物学如何随尾矿堆中深度的变化而变化,并表明在浅尾矿物质(<40 cm)中存在菱镁矿[Mg 5(CO 34(OH)2 ·4H 2 O],而煤[Mg 10 Fe 3+ 2(CO 3)(OH)24·2H 2 O]和焦铁矿[Mg 6 Fe 3+ 2(CO 3)(OH)16 ·4H 2 O]在尾矿中形成得更深。这表明在尾矿的上〜1 m范围内可能存在两个地球化学环境,在浅尾矿中,水镁石是在富CO 2的条件下通过水镁石的碳化而在浅尾矿中形成的,并且在深度上碳含量更高的条件下会形成焦铁矿和煤成矿。放射性同位素结果表明菱镁矿和焦铝铁矿具有现代的(F 14 C> 0.8)大气CO 2资源。基于实验室的阴离子交换实验,进行探索pyroaurite稳定Ç同位素分馏,显示,pyroauriteδ 13 C值,碳的可用性发生变化,和13 C-耗尽签名是典型的水滑石的在C-有限的环境,如深尾矿在Woodsreef。定量XRD和元素C数据估计,Woodsreef的吸收量为229.0–405.1 g CO 2  m -2 y -1

更新日期:2018-10-17
down
wechat
bug