当前位置: X-MOL 学术J. Electroanal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantification of triethanolamine through measurement of catalytic current in alkaline iron-d-gluconate solution
Journal of Electroanalytical Chemistry ( IF 4.1 ) Pub Date : 2018-12-01 , DOI: 10.1016/j.jelechem.2018.10.026
Margit Lenninger , Noemi Aguilo-Aguayo , Thomas Bechtold

Abstract Triethanolamine is widely used in cosmetics and detergent formulations. Through its negative redox potential of −1050 mV (vs. Ag/AgCl, 3 M KCl) the Fe(II/III)-triethanolamine complex also is of interest as electrolyte in redox-flow batteries. Thus an analytical method to determine triethanolamine concentrations in complex formulations is of distinct technical value. In cyclic voltammetry a catalytic current is observed when Fe(III)-triethanolamine complexes are reduced in presence of an excess Fe(III)- d -gluconate. The catalytical regeneration of the Fe(III)-triethanolamine complex occurs at its characteristic cathodic peak potential (Ep)c of −1050 mV and thus permits analytical determination of low triethanolamine concentrations. In CV experiments a linear relationship between triethanolamine concentration and (Ep)c at −1050 mV was observed for triethanolamine concentrations between 0.05 and 1 mM in an electrolyte containing 15 mM Fe(III)- d -gluconate and 0.4 M NaOH. As an example, electrolytes from an all‑iron redox-flow cell were analysed for possible transfer of triethanolamine through the ion exchange membrane. The standard addition method was used to minimise matrix effects on the determination of the cathodic peak currents (Ip)c. The new method permits a direct analysis of triethanolamine concentration without extensive sample preparation or highly specialised equipment. This makes the technique useful as a routine method for triethanolamine analysis in a wide range of technical applications.

中文翻译:

通过测量碱性d-葡萄糖酸铁溶液中的催化电流定量三乙醇胺

摘要 三乙醇胺广泛用于化妆品和洗涤剂配方中。由于其负氧化还原电位为 -1050 mV(相对于 Ag/AgCl,3 M KCl),Fe(II/III)-三乙醇胺络合物也可用作氧化还原液流电池中的电解质。因此,确定复杂制剂中三乙醇胺浓度的分析方法具有独特的技术价值。在循环伏安法中,当 Fe(III)-三乙醇胺配合物在过量 Fe(III)-d-葡萄糖酸盐存在下被还原时,会观察到催化电流。Fe(III)-三乙醇胺复合物的催化再生发生在其特征阴极峰电位 (Ep)c 为 -1050 mV 时,因此允许对低三乙醇胺浓度进行分析测定。在 CV 实验中,在含有 15 mM Fe(III)-d-葡萄糖酸盐和 0.4 M NaOH 的电解质中,对于 0.05 到 1 mM 之间的三乙醇胺浓度,观察到三乙醇胺浓度和 (Ep)c 在 -1050 mV 之间的线性关系。例如,对来自全铁氧化还原流通池的电解质进行了分析,以确定三乙醇胺通过离子交换膜的可能转移。使用标准添加方法将基质效应对阴极峰值电流 (Ip)c 的测定降至最低。新方法允许直接分析三乙醇胺浓度,无需大量样品制备或高度专业化的设备。这使得该技术在广泛的技术应用中可用作三乙醇胺分析的常规方法。05 和 1 mM 在含有 15 mM Fe(III)-d-葡萄糖酸盐和 0.4 M NaOH 的电解质中。例如,对来自全铁氧化还原流通池的电解质进行了分析,以确定三乙醇胺通过离子交换膜的可能转移。使用标准添加方法将基质效应对阴极峰值电流 (Ip)c 的测定降至最低。新方法允许直接分析三乙醇胺浓度,无需大量样品制备或高度专业化的设备。这使得该技术在广泛的技术应用中可用作三乙醇胺分析的常规方法。05 和 1 mM 在含有 15 mM Fe(III)-d-葡萄糖酸盐和 0.4 M NaOH 的电解质中。例如,对来自全铁氧化还原流通池的电解质进行了分析,以确定三乙醇胺通过离子交换膜的可能转移。使用标准添加方法将基质效应对阴极峰值电流 (Ip)c 的测定降至最低。新方法允许直接分析三乙醇胺浓度,无需大量样品制备或高度专业化的设备。这使得该技术在广泛的技术应用中可用作三乙醇胺分析的常规方法。使用标准添加方法将基质效应对阴极峰值电流 (Ip)c 的测定降至最低。新方法允许直接分析三乙醇胺浓度,无需大量样品制备或高度专业化的设备。这使得该技术在广泛的技术应用中可用作三乙醇胺分析的常规方法。使用标准添加方法将基质效应对阴极峰值电流 (Ip)c 的测定降至最低。新方法允许直接分析三乙醇胺浓度,无需大量样品制备或高度专业化的设备。这使得该技术在广泛的技术应用中可用作三乙醇胺分析的常规方法。
更新日期:2018-12-01
down
wechat
bug