当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasma-Induced Vacancy Defects in Oxygen Evolution Cocatalysts on Ta3N5 Photoanodes Promoting Solar Water Splitting
ACS Catalysis ( IF 11.3 ) Pub Date : 2018-10-16 00:00:00 , DOI: 10.1021/acscatal.8b03111
Lei Wang 1 , Beibei Zhang 1 , Qiang Rui 1
Affiliation  

Surface recombination is a critical issue for tantalum nitride (Ta3N5)-based photoanodes in solar water splitting application. The efficient cocatalysts (Ni-, Fe-, and Co-based) have been developed to promote the electron–hole separation and transportation but still have limited success in some cases. Herein, we studied the Ar plasma-induced etching strategy on the pristine Ta3N5 nanotubes and Co(OH)x-decorated Ta3N5 nanotubes. The Ar plasma can not only destroy the recombination center (TaO) in the interface between the Ta3N5 and electrolyte, resulting in a fast charge transfer, but also most importantly generate more oxygen vacancies with a high ratio of Co2+/Co3+ and produce a higher surface area in the Co(OH)x cocatalyst. The more active sites on Ta3N5 and abundant oxygen vacancies on cocatalyst synergetically contribute to the enhanced solar water splitting activity, which give rise to a fast water oxidation reaction in the interface. The resulting photoanode shows double the performance improvement under AM 1.5G sunlight conditions. Interface-defect engineering is proven to be an efficient and facile strategy to enhance the solar water oxidation activity of Ta3N5, which highlights the advantages of the plasma-etching strategy for establishing the highly active cocatalysts on photoanodes in terms of the conversion of solar energy into chemical energy.

中文翻译:

Ta 3 N 5光阳极上析氧助催化剂中等离子体诱导的空位缺陷,促进太阳能水的分解

对于在太阳能水分解应用中基于氮化钽(Ta 3 N 5)的光阳极而言,表面重组是一个关键问题。已经开发出有效的助催化剂(Ni-,Fe-和Co-基)来促进电子-空穴的分离和传输,但在某些情况下仍然取得了有限的成功。在这里,我们研究了Ar等离子体诱导的原始Ta 3 N 5纳米管和Co(OH)x装饰的Ta 3 N 5纳米管的刻蚀策略。Ar等离子体不仅可以破坏Ta 3 N 5之间的界面中的重组中心(TaO)和电解质,导致快速的电荷转移,但最重要的是还产生更多具有较高Co 2+ / Co 3+比例的氧空位,并在Co(OH)x助催化剂中产生更大的表面积。Ta 3 N 5上的较高活性位和助催化剂上的大量氧空位共同有助于增强太阳能分解水的活性,从而在界面上引起快速的水氧化反应。所得的光阳极在AM 1.5G阳光条件下显示出两倍的性能提升。事实证明,界面缺陷工程是提高Ta 3 N 5的太阳能氧化活性的有效且简便的策略。,这突出了等离子刻蚀策略在将光能转化为化学能方面在光阳极上建立高活性助催化剂的优势。
更新日期:2018-10-16
down
wechat
bug