当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual‐Programmable Shape‐Morphing and Self‐Healing Organohydrogels Through Orthogonal Supramolecular Heteronetworks
Advanced Materials ( IF 27.4 ) Pub Date : 2018-10-17 , DOI: 10.1002/adma.201804435
Ziguang Zhao 1 , Shuyun Zhuo 1 , Ruochen Fang 1 , Longhao Zhang 1 , Xintao Zhou 1 , Yichao Xu 1 , Jianqi Zhang 2 , Zhichao Dong 3 , Lei Jiang 1, 3 , Mingjie Liu 1, 4, 5
Affiliation  

Programmable materials that can change their inherent shapes or properties are highly desirable due to their promising applications. However, among various programmable shape‐morphing materials, the single control route allows temporary states to recover the unchangeable former state, thus lacking the sophisticated programmability for their shape‐encoding behaviors and mechanics. Herein, dual‐programmable shape‐morphing organohydrogels featuring supramolecular heteronetworks are developed. In the system, the metallo‐supramolecular hydrogel framework and micro‐organogels featuring semicrystalline comb‐type networks independently respond to different stimuli, thereby providing orthogonal dual‐switching mechanics and ultrahigh mechanical strength. The supramolecular heteronetworks also possess excellent self‐healing properties. More notably, such orthogonal supramolecular heteronetworks demonstrate hierarchical shape morphing performance that far exceeds conventional shape‐morphing materials. Utilizing this dual programming strategy of the orthogonal supramolecular heteronetworks, the material's permanent shape can be manipulated in a step‐wise shape morphing process, thereby realizing sophisticated shape changes with a high degree of freedom. The organohydrogels can act as a biomimetic smart device for the on‐demand control of unidirectional liquid transport. Based on these characteristics, it is anticipated that the supramolecular organohydrogels may serve as adaptive programmable materials for a variety of applications.

中文翻译:

通过正交超分子异质网络进行双可编程形状变形和自修复的有机水凝胶

由于其有希望的应用,人们非常希望能够改变其固有形状或特性的可编程材料。但是,在各种可编程形状变形材料中,单一控制路径允许临时状态恢复不可更改的先前状态,因此缺乏其形状编码行为和力学的复杂可编程性。在这里,开发了具有超分子异质网络的双可编程形状变形有机水凝胶。在该系统中,具有半结晶梳型网络的金属-超分子水凝胶骨架和微有机凝胶分别对不同的刺激做出响应,从而提供正交的双重转换机制和超高的机械强度。超分子异质网络还具有出色的自愈特性。更值得注意的是 这种正交的超分子异质网络表现出层次的形状变形性能,远远超过了传统的形状变形材料。利用正交超分子异质网络的这种双重编程策略,可以在逐步的形状变形过程中操纵材料的永久形状,从而以高度的自由度实现复杂的形状变化。有机水凝胶可以充当仿生智能设备,用于按需控制单向液体传输。基于这些特性,预计超分子有机水凝胶可作为适用于各种应用的可编程材料。利用正交超分子异质网络的这种双重编程策略,可以在逐步的形状变形过程中操纵材料的永久形状,从而以高度的自由度实现复杂的形状变化。有机水凝胶可以充当仿生智能设备,用于按需控制单向液体传输。基于这些特性,预计超分子有机水凝胶可作为适用于各种应用的可编程材料。利用正交超分子异质网络的这种双重编程策略,可以在逐步的形状变形过程中操纵材料的永久形状,从而以高度的自由度实现复杂的形状变化。有机水凝胶可以充当仿生智能设备,用于按需控制单向液体传输。基于这些特性,预计超分子有机水凝胶可作为适用于各种应用的可编程材料。有机水凝胶可以充当仿生智能设备,用于按需控制单向液体传输。基于这些特性,预计超分子有机水凝胶可作为适用于各种应用的可编程材料。有机水凝胶可以充当仿生智能设备,用于按需控制单向液体传输。基于这些特性,预计超分子有机水凝胶可作为适用于各种应用的可编程材料。
更新日期:2018-10-17
down
wechat
bug