当前位置: X-MOL 学术ACS Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli
ACS Synthetic Biology ( IF 3.7 ) Pub Date : 2018-10-16 00:00:00 , DOI: 10.1021/acssynbio.8b00345
Gonzalo Durante-Rodríguez 1 , Víctor de Lorenzo 2 , Pablo I. Nikel 3
Affiliation  

Most of the current methods for controlling the formation rate of a key protein or enzyme in cell factories rely on the manipulation of target genes within the pathway. In this article, we present a novel synthetic system for post-translational regulation of protein levels, FENIX, which provides both independent control of the steady-state protein level and inducible accumulation of target proteins. The FENIX device is based on the constitutive, proteasome-dependent degradation of the target polypeptide by tagging with a short synthetic, hybrid NIa/SsrA amino acid sequence in the C-terminal domain. Protein production is triggered via addition of an orthogonal inducer (i.e., 3-methylbenzoate) to the culture medium. The system was benchmarked in Escherichia coli by tagging two fluorescent proteins (GFP and mCherry), and further exploited to completely uncouple poly(3-hydroxybutyrate) (PHB) accumulation from bacterial growth. By tagging PhaA (3-ketoacyl-CoA thiolase, first step of the route), a dynamic metabolic switch at the acetyl-coenzyme A node was established in such a way that this metabolic precursor could be effectively redirected into PHB formation upon activation of the system. The engineered E. coli strain reached a very high specific rate of PHB accumulation (0.4 h–1) with a polymer content of ca. 72% (w/w) in glucose cultures in a growth-independent mode. Thus, FENIX enables dynamic control of metabolic fluxes in bacterial cell factories by establishing post-translational synthetic switches in the pathway of interest.

中文翻译:

翻译后代谢开关使细菌生长与工程化大肠杆菌中的生物聚合物生产完全脱钩

当前用于控制细胞工厂中关键蛋白质或酶形成速率的大多数方法都依赖于途径内靶基因的操纵。在本文中,我们介绍了一种用于蛋白质水平的翻译后调节的新型合成系统FENIX,该系统既提供对稳态蛋白水平的独立控制,又提供目标蛋白的可诱导积累。FENIX设备基于目标多肽的组成性蛋白酶体依赖性降解,通过在C端域中标记一个短的合成杂交NIa / SsrA氨基酸序列进行标记。通过向培养基中添加正交诱导剂(3-甲基苯甲酸酯)来触发蛋白质生产。该系统在大肠杆菌中进行了基准测试通过标记两个荧光蛋白(GFP和mCherry),并进一步用于从细菌生长中完全解离聚3-羟基丁酸酯(PHB)积累。通过标记PhaA(3-酮酰基-CoA硫解酶,路线的第一步),在乙酰辅酶A节点处建立了动态​​代谢转换,以使这种代谢前体可以在激活后被有效地重新导向PHB的形成。系统。经工程改造的大肠杆菌菌株达到了很高的PHB累积率(0.4 h –1),聚合物含量约为。葡萄糖培养物中72%(w / w)处于非生长依赖性模式。因此,FENIX通过在目标途径中建立翻译后合成开关,能够动态控制细菌细胞工厂中的代谢通量。
更新日期:2018-10-16
down
wechat
bug