当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitrogen and Phosphorus Dual-Doped Graphene Aerogel Confined Monodisperse Iron Phosphide Nanodots as an Ultrafast and Long-Term Cycling Anode Material for Sodium-Ion Batteries
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-10-15 00:00:00 , DOI: 10.1021/acssuschemeng.8b03561
Yaping Wang 1, 2 , Qi Fu 1 , Chuan Li 1 , Huanhuan Li 3 , Hua Tang 1
Affiliation  

Transition metal phosphides have recently gained much interest as anodes for sodium-ion batteries (SIBs). However, their intrinsic volume change during Na ion uptake/release leads to poor cycling stability and limited rate performance. To solve this problem, a unique hybrid architecture of iron phosphide nanodots bound on 3D phosphorus-doped graphitic nitrogen-rich graphene (FeP/NPG) is obtained from the phosphidation of NH2-rich reduced graphene oxide (rGO) decorated Fe2O3. Monodispersed FeP nanodots integrating with 3D NPG networks and high content of graphitic N not only induce fast Na ion/electron transfer kinetic and excellent structural stability during long-term cycling, but also they enhance the capacitive contribution. These features of FeP/NPG result in high-performance sodium storage. A high reversible capacity of 613 mAh g–1 is achieved at 50 mA g–1. Also, an excellent rate capability of 422 and 349 mAh g–1 is observed at 1 and 3 A g–1, respectively. More importantly, an ultrastable capacity of 378 mAh g–1 at 1 A g–1 can be obtained upon long-term cycling. It shall be possible to extend this strategy for fabricating other transition metal phosphide-based anodes for advanced SIBs.

中文翻译:

氮和磷双掺杂石墨烯气凝胶限制单分散磷酸铁纳米点作为钠离子电池的超快和长期循环阳极材料

过渡金属磷化物作为钠离子电池(SIB)的阳极最近引起了人们的极大兴趣。但是,它们在Na离子吸收/释放过程中的固有体积变化会导致较差的循环稳定性和速率性能受限。为了解决此问题,通过富NH 2还原的氧化石墨烯(rGO )装饰的Fe 2 O 3的磷化作用,获得了绑定在3D掺磷石墨富氮石墨烯(FeP / NPG)上的磷化铁纳米点的独特混合结构。。与3D NPG网络集成的单分散FeP纳米点和高含量的石墨N不仅在长期循环中诱导出快速的Na离子/电子转移动力学和出色的结构稳定性,而且还增强了电容性贡献。FeP / NPG的这些特性可实现高性能的钠存储。50 mA g –1时可实现613 mAh g –1的高可逆容量。此外,在1和3 A g –1时分别观察到422和349 mAh g –1的出色速率能力。更重要的是,378毫安g的超容量-1 1 A G -1长期骑行即可获得。应该可以扩展这种策略,以制造用于高级SIB的其他基于过渡金属磷化物的阳极。
更新日期:2018-10-15
down
wechat
bug