当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Geologic Architecture System‐Inspired Micro‐/Nano‐Heterostructure Design for High‐Performance Energy Storage
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-10-15 , DOI: 10.1002/aenm.201802388
Caichao Wan 1 , Yue Jiao 2 , Daxin Liang 2 , Yiqiang Wu 1 , Jian Li 2
Affiliation  

Nature‐inspired strategies are extensively proposed as novel and effective routines to address challenges for eco‐friendly and high‐performance energy storage devices with high energy/power density and long cycling life. Inspired by synergistic functions and integrated form of a geologic architecture system (i.e., ground–mountain–vegetation), here a novel and hierarchical cellulose‐supported Co@Co(OH)2 heterostructure based on a facile combined method of magnetron sputtering and electrooxidation is created. Thanks to the synergistic effects of this multiscale structure (i.e., the storage capacity of cellulose substrate (ground) for electrolyte ions, electron superhighway supplied by interlayered metallic Co (mountain), and ultrahigh electrochemical activity and mechanical stability of in situ grown and quasi‐honeycomb Co(OH)2 (vegetation) with large surface area), the composite displays a high specific capacitance (642 mF cm−2/958 F g−1 at 2 mA cm−2), excellent rate performance, and outstanding cycling stability (only 2.1% loss after 10 000 cycles), which are significantly superior to those of other microstructure designs of Co(OH)2‐based electrodes. Also, the assembled asymmetric supercapacitor exhibits highly competitive energy/power density (166 µW h cm−2 at 1.5 mW cm−2) and excellent cycling stability. Combined with the outstanding electrochemical properties, facile synthesis technology, environmental friendliness, and low cost, this ingenious nature‐inspired composite holds great promise for green high‐performance energy storage devices.

中文翻译:

地质建筑系统启发的高性能微/纳米异质结构设计

广泛提出了以自然为灵感的策略,将其作为新颖而有效的例行程序,以应对具有高能量/功率密度和长循环寿命的生态友好型高性能储能设备的挑战。受协同功能和地质建筑系统(即地面-植被)的整合形式的启发,这里提出了一种新型且分层的纤维素支持的Co @ Co(OH)2建立了基于磁控溅射和电氧化的简便组合方法的异质结构。得益于这种多尺度结构的协同效应(例如,纤维素基质(地面)对电解质离子的存储能力,层状金属Co(山)提供的电子高速公路,以及超高的电化学活性和原位生长和准金属的机械稳定性)。蜂窝状Co(OH)2(植被),具有大的表面积),复合材料显示出高的比电容(642 mF cm -2 / 958 F g -1在2 mA cm -2时),优异的倍率性能和出色的循环稳定性(10000次循环后仅损失2.1%),这明显优于其他基于Co(OH)2的电极的微结构设计。此外,组装的超级电容器不对称展品高度竞争的能量/功率密度(166μW高厘米-2在1.5毫瓦厘米-2)和优异的循环稳定性。结合出色的电化学性能,便捷的合成技术,环境友好和低成本,这种新颖的,受自然启发的复合材料为绿色高性能储能设备带来了广阔的前景。
更新日期:2018-10-15
down
wechat
bug