当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing Magnetic Anisotropy through Strain Doping
Advanced Science ( IF 14.3 ) Pub Date : 2018-10-10 , DOI: 10.1002/advs.201800356
Andreas Herklotz 1, 2 , Zheng Gai 3 , Yogesh Sharma 1 , Amanda Huon 1 , Stefania F Rus 4 , Lu Sun 5 , Jian Shen 6 , Philip D Rack 3, 7 , Thomas Z Ward 1
Affiliation  

The coupling between a material's lattice and its underlying spin state links structural deformation to magnetic properties; however, traditional strain engineering does not allow the continuous, post‐synthesis control of lattice symmetry needed to fully utilize this fundamental coupling in device design. Uniaxial lattice expansion induced by post‐synthesis low energy helium ion implantation is shown to provide a means of bypassing these limitations. Magnetocrystalline energy calculations can be used a priori to estimate the predictive design of a material's preferred magnetic spin orientation. The efficacy of this approach is experimentally confirmed in a spinel CoFe2O4 model system where the epitaxial film's magnetic easy axis is continuously manipulated between the out‐of‐plane (oop) and in‐plane (ip) directions as lattice tetragonality moves from ip to oop with increasing strain doping. Macroscopically gradual and microscopically abrupt changes to preferential spin orientation are demonstrated by combining ion irradiation with simple beam masking and lithographic procedures. The ability to design magnetic spin orientations across multiple length scales in a single crystal wafer using only crystal symmetry considerations provides a clear path toward the rational design of spin transfer, magnetoelectric, and skyrmion‐based applications where magnetocrystalline energy must be dictated across multiple length scales.

中文翻译:

通过应变掺杂设计磁各向异性

材料晶格与其底层自旋态之间的耦合将结构变形与磁特性联系起来;然而,传统的应变工程不允许对晶格对称性进行连续的合成后控制,而这需要在器件设计中充分利用这种基本耦合。合成后低能氦离子注入引起的单轴晶格膨胀被证明提供了绕过这些限制的方法。磁晶能量计算可用于先验地估计材料的首选磁自旋方向的预测设计。这种方法的有效性在尖晶石 CoFe 2 O 4模型系统中得到了实验证实,其中随着晶格四方性从面外 (oop) 和面内 (ip) 方向移动,外延膜的易磁轴在面外 (oop) 和面内 (ip) 方向之间连续操纵。 ip 与 oop 随着应变掺杂的增加而变化。通过将离子照射与简单的光束掩模和光刻程序相结合,证明了优先自旋方向的宏观渐进和微观突然变化。仅使用晶体对称性考虑因素在单个晶体晶片中设计跨多个长度尺度的磁自旋方向的能力为自旋转移、磁电和基于斯格明子的应用的合理设计提供了一条清晰的道路,在这些应用中磁晶能量必须跨多个长度尺度进行控制。
更新日期:2018-10-10
down
wechat
bug