当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Morphological Engineering of Winged [email protected]2 Heterostructures for Electrocatalytic Hydrogen Evolution
Nano Letters ( IF 9.6 ) Pub Date : 2018-10-08 00:00:00 , DOI: 10.1021/acs.nanolett.8b03109
Yuan Li , Marek B. Majewski , Saiful M. Islam , Shiqiang Hao , Akshay A. Murthy , Jennifer G. DiStefano , Eve D. Hanson , Yaobin Xu , Chris Wolverton , Mercouri G. Kanatzidis , Michael R. Wasielewski , Xinqi Chen , Vinayak P. Dravid

Molybdenum disulfide (MoS2) has been recognized as a promising cost-effective catalyst for water-splitting hydrogen production. However, the desired performance of MoS2 is often limited by insufficient edge-terminated active sites, poor electrical conductivity, and inefficient contact to the supporting substrate. To address these limitations, we developed a unique nanoarchitecture (namely, winged [email protected]2 heterostructures enabled by our discovery of the “seeding effect” of Au nanoparticles for the chemical vapor deposition synthesis of vertically aligned few-layer MoS2 wings). The winged [email protected]2 heterostructures provide an abundance of edge-terminated active sites and are found to exhibit dramatically improved electrocatalytic activity for the hydrogen evolution reaction. Theoretical simulations conducted for this unique heterostructure reveal that the hydrogen evolution is dominated by the proton adsorption step, which can be significantly promoted by introducing sufficient edge active sites. Our study introduces a new morphological engineering strategy to make the pristine MoS2 layered structures highly competitive earth-abundant catalysts for efficient hydrogen production.

中文翻译:

翼形[受电子邮件保护] 2异质结构的形态工程,用于电催化氢的释放

二硫化钼(MoS 2)已被公认为是一种有前景的具有成本效益的水分解氢生产催化剂。但是,MoS 2的所需性能通常受到边缘端接的活性位点不足,导电性差以及与支撑基板的接触效率低下的限制。为了解决这些局限性,我们开发了独特的纳米结构(即有翼的[受电子邮件保护的] 2异质结构,这是由于我们发现了用于化学气相沉积合成的垂直排列的多层MoS 2机翼的Au纳米粒子的“播种效应” )。翅[电子邮件保护的] 2异质结构提供了丰富的边缘终止的活性位点,并且发现其显着改善了对氢气析出反应的电催化活性。对这种独特的异质结构进行的理论模拟表明,氢的释放主要受质子吸附步骤的影响,通过引入足够的边缘活性位点可以显着促进氢的释放。我们的研究引入了一种新的形态工程策略,以使原始的MoS 2层状结构具有高度竞争性的富含地球的催化剂,从而可以高效地制氢。
更新日期:2018-10-08
down
wechat
bug