当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlling the Trajectories of Nano/Micro Particles Using Light-Actuated Marangoni Flow
Nano Letters ( IF 9.6 ) Pub Date : 2018-10-04 00:00:00 , DOI: 10.1021/acs.nanolett.8b02814
Cunjing Lv 1, 2 , Subramanyan Namboodiri Varanakkottu 3 , Tobias Baier 1 , Steffen Hardt 1
Affiliation  

The ability to manipulate small objects and to produce patterns on the nano- and microscale is of great importance, both with respect to fundamentals and technological applications. The manipulation of particles with diameters of the order of 100 nm or below is a challenge because of their Brownian motion but also because of the scaling behavior of methods such as optical trapping. The unification of optical and hydrodynamic forces is a potential route toward the manipulation of tiny objects. Herein we demonstrate the trapping and manipulation of nano- and microparticles based on interfacial flows controlled by visible light, a method we denote as “Light-Actuated Marangoni Tweezer (LAMT)”. We experimentally study the manipulation of particles having diameters ranging from 20 nm to 10 μm, including quantum dots and polystyrene nano/microparticles. The particles can be manipulated by scanning a light beam along a liquid surface. In this way, we are able to define almost arbitrary particle trajectories, for example, in the form of letters. In addition, we are able to handle a number of particles in parallel by creating an optical “landscape” consisting of a multitude of laser spots. The inherent advantages of LAMTs are the linear scaling of the trapping force with the particle diameter and the fact that the force is less dependent on particle properties than in the case of conventional methods.

中文翻译:

使用光驱Marangoni流控制纳米/微粒的轨迹

在基本原理和技术应用方面,操纵小物体并在纳米和微米尺度上产生图案的能力都非常重要。直径为100 nm或以下的粒子的操作是一个挑战,这是因为它们的布朗运动,而且还因为诸如光学陷阱之类的方法的缩放行为。光学力和流体动力的统一是通向微小物体的潜在途径。本文中,我们展示了基于可见光控制的界面流对纳米和微粒的捕获和处理,我们将这种方法称为“光致动Marangoni镊子(LAMT)”。我们通过实验研究了直径范围从20 nm到10μm的颗粒的操纵,包括量子点和聚苯乙烯纳米/微粒。可以通过沿着液体表面扫描光束来操纵粒子。这样,我们可以定义几乎任意的粒子轨迹,例如以字母的形式。此外,我们能够通过创建由多个激光点组成的光学“景观”来并行处理许多粒子。LAMT的固有优势是捕获力与粒径成线性比例关系,并且与传统方法相比,该作用对颗粒性质的依赖性较小。通过创建由多个激光点组成的光学“景观”,我们能够并行处理许多粒子。LAMT的固有优势是捕获力与粒径成线性比例关系,并且与传统方法相比,该作用对颗粒性质的依赖性较小。通过创建由多个激光点组成的光学“景观”,我们能够并行处理许多粒子。LAMT的固有优势是捕获力与粒径成线性比例关系,并且与传统方法相比,该作用对颗粒性质的依赖性较小。
更新日期:2018-10-04
down
wechat
bug