当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the mechanistic role of nitrogen-doped carbon cathodes in lithium-sulfur batteries with low electrolyte weight portion
Nano Energy ( IF 16.8 ) Pub Date : 2018-10-03 , DOI: 10.1016/j.nanoen.2018.09.065
Susanne Dörfler , Patrick Strubel , Tony Jaumann , Erik Troschke , Felix Hippauf , Christian Kensy , Alexander Schökel , Holger Althues , Lars Giebeler , Steffen Oswald , Stefan Kaskel

The lithium-sulfur (Li–S) battery is a promising alternative to overcome capacity and specific energy limitations of common lithium-ion batteries. Highly porous, nitrogen-doped carbons as conductive host structures for sulfur/lithium sulfide deposition are shown herein to play a critical role in reversible cycling at low electrolyte/sulfur ratio. The pore geometry is precisely controlled by an efficient, scalable ZnO hard templating process. By using an electrolyte volume as low as 4 µL mg-1S, the beneficial nitrogen functionality leads to a twofold increased cell lifetime turning our findings highly favorable for real applications. Stable cycling of up to 156 cycles (59 cycles with undoped carbon) with high sulfur loadings of 3 mg cm-2 is achieved. Operando X-ray diffraction measurements during cycling show the transformation pathway of the sulfur – polysulfide – Li2S species. The observed intermediates critically depend on the nitrogen doping in the cathode carbon matrix. Nitrogen-doped carbons facilitate polysulfide adsorption promoting the nucleation of crystalline Li2S. These results provide new insights into the significant role of heteroatom doping for carbons in Li-S batteries with high specific energy.



中文翻译:

氮含量低的重量比低的锂硫电池中氮掺杂碳阴极的作用机理

锂硫(Li–S)电池是克服普通锂离子电池的容量和特定能量限制的一种有前途的替代品。本文显示高度多孔的氮掺杂碳作为用于硫/硫化锂沉积的导电主体结构在低电解质/硫比的可逆循环中起关键作用。孔的几何形状由有效的,可扩展的ZnO硬模板工艺精确控制。通过使用低至4 µL mg -1 S的电解质,有益的氮官能度可将电池寿命延长两倍,这使我们的发现非常适合实际应用。在3 mg cm -2的高硫负载下,可实现高达156个循环(未掺杂碳的59个循环)的稳定循环。Operando循环过程中的X射线衍射测量显示了硫–多硫化物– Li 2 S物种的转化途径。观察到的中间体关键取决于阴极碳基质中的氮掺杂。氮掺杂碳促进多硫化物吸附,从而促进结晶Li 2 S的成核。这些结果为杂原子掺杂对高比能Li-S电池中碳的重要作用提供了新的见解。

更新日期:2018-10-03
down
wechat
bug