当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks†
Lab on a Chip ( IF 6.1 ) Pub Date : 2018-10-01 00:00:00 , DOI: 10.1039/c8lc00694f
Eve Moutaux 1, 2, 3, 4 , Benoit Charlot 4, 5, 6, 7 , Aurélie Genoux 1, 2, 3, 4 , Frédéric Saudou 1, 2, 3, 4, 8 , Maxime Cazorla 1, 2, 3, 4
Affiliation  

In the central nervous system, neurons are organized in specific neural networks with distinct electrical patterns, input integration capacities, and intracellular dynamics. In order to better understand how neurons process information, it is crucial to keep the complex organization of brain circuits. However, performing subcellular investigations with high spatial and temporal resolution in vivo is technically challenging, especially in fine structures, such as axonal projections. Here, we present an on-a-chip system that combines a microfluidic platform with a dedicated matrix of electrodes to study activity-dependent dynamics in the physiological context of brain circuits. Because this system is compatible with high-resolution video-microscopy, it is possible to simultaneously record intracellular dynamics and electrical activity in presynaptic axonal projections and in their postsynaptic neuronal targets. Similarly, specific patterns of electrical activity can be applied to both compartments in order to investigate how intrinsic and network activities influence intracellular dynamics. The fluidic isolation of each compartment further allows the selective application of drugs at identified sites to study activity-dependent synaptic transmission. This integrated microfluidic/microelectrode array (microMEA) platform is a valuable tool for studying various intracellular and synaptic dynamics in response to neuronal activity in a physiologically relevant context that resembles in vivo brain circuits.

中文翻译:

集成的微流控/微电极阵列,用于研究神经元网络中依赖活动的细胞内动力学

在中枢神经系统中,神经元组织在具有不同电模式,输入整合能力和细胞内动力学的特定神经网络中。为了更好地理解神经元如何处理信息,保持大脑回路的复杂组织至关重要。但是,在体内以高时空分辨率进行亚细胞研究在技​​术上具有挑战性,尤其是在轴突突出的精细结构中。在这里,我们提出了一个芯片上的系统,该系统将微流体平台与专用的电极矩阵相结合,以研究脑回路生理环境中与活动有关的动力学。因为此系统与高分辨率的视频显微镜兼容,所以可以同时记录突触前轴突投射及其突触后神经元靶标中的细胞内动力学和电活动。类似地,可以将电活动的特定模式应用于两个隔室,以研究固有活动和网络活动如何影响细胞内动力学。每个隔室的流体隔离进一步允许在确定的部位选择性地应用药物,以研究依赖于活性的突触传递。这个集成的微流控/微电极阵列(microMEA)平台是一种有价值的工具,可用于在生理相关的情况下研究各种细胞内和突触动力学对神经元活动的响应体内脑回路。
更新日期:2018-10-01
down
wechat
bug