当前位置: X-MOL 学术Bioresource Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
16s rRNA gene sequencing and radioisotopic analysis reveal the composition of ammonia acclimatized methanogenic consortia
Bioresource Technology ( IF 9.7 ) Pub Date : 2018-09-26 , DOI: 10.1016/j.biortech.2018.09.128
Hailin Tian , Laura Treu , Konstantinos Konstantopoulos , Ioannis A. Fotidis , Irini Angelidaki

Different mesophilic and thermophilic methanogenic consortia were acclimatised and enriched to extreme total ammonia (9.0 and 5.0 g NH4+-N L−1, respectively) and free ammonia (1.0 and 1.4 g NH3-N L−1, respectively) levels in this study. [2-14C] acetate radioisotopic analyses showed the dominance of aceticlastic methanogenesis in all enriched consortia. According to 16S rRNA gene sequencing result, in mesophilic consortia, methylotrophic Methanomassiliicoccus luminyensis was predominant, followed by aceticlastic Methanosarcina soligelidi. A possible scenario explaining the dominance of M. luminyensis includes the use of methylamine produced by Tissierella spp. and biomass build-up by metabolizing acetate. Nevertheless, further studies are needed to pinpoint the exact metabolic pathway of M. luminyensis. In thermophilic consortia, aceticlastic Methanosarcina thermophila was the sole dominant methanogen. Overall, results derived from this study demonstrated the efficient biomethanation ability of these ammonia-tolerant methanogenic consortia, indicating a potential application of these consortia to solve ammonia toxicity problems in future full-scale reactors.



中文翻译:

16S rRNA基因测序和放射性同位素分析揭示了氨适应甲烷化产财团的组成

在这项研究中,不同的嗜温和嗜热产甲烷菌适应了环境,并富集到极高的总氨(分别为9.0和5.0 g NH 4 + -NL -1)和游离氨(分别为1.0和1.4 g NH 3 -NL -1)水平。 。[2- 14 C]乙酸酯放射性同位素分析表明aceticlastic甲烷在所有富集财团的主导地位。根据16S rRNA基因测序结果,在嗜温菌群中,甲基营养型甲烷发光甲烷球菌占主导地位,其次是醋酸弹状甲烷八叠球菌。一个可能的情况解释了发光夜蛾的优势包括使用Tissierella spp生产的甲胺。并通过代谢乙酸盐积累生物量。尽管如此,仍需要进一步的研究来查明发光支原体的确切代谢途径。在嗜热菌群中,具回弹力的嗜热甲烷单胞是唯一的占主导地位的产甲烷菌。总体而言,这项研究得出的结果证明了这些耐氨性产甲烷菌团的有效生物甲烷化能力,表明这些菌团在解决未来的大型反应器中氨毒性问题方面的潜在应用。

更新日期:2018-09-26
down
wechat
bug