当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental investigation on the effects of rotation and the blowing ratio on the leading-edge film cooling of a twist turbine blade
International Journal of Heat and Mass Transfer ( IF 5.2 ) Pub Date : 2019-02-01 , DOI: 10.1016/j.ijheatmasstransfer.2018.09.005
Hai-wang Li , Feng Han , Yi-wen Ma , Hai-chao Wang , Zhi-yu Zhou , Zhi Tao

Abstract An experimental investigation has been performed to investigate the effects of the rotation and blowing ratio on the film cooling effectiveness distributions of the leading-edge regions of a twist gas turbine blade using a thermochromic liquid crystal (TLC) technique. The experiments were carried out at three rotating speeds, including 400 rpm (positive incidence angle), 550 rpm (zero incidence angle), and 700 rpm (negative incidence angle). The averaged blowing ratio ranged from 0.5 to 2.0. CO2 was used as the coolant to ensure that the coolant-to-mainstream ratio was equal to 1.56. The Reynolds number, based on the mainstream velocity of the turbine outlet and the rotor blade chord length, was 6.08 × 104. The effects of the rotating speed and the blowing ratio were analyzed based on the film cooling effectiveness distribution. The results show that rotating speed plays an indispensable role in determining the film cooling effectiveness of distributions on the leading edge. The position of the stagnation line moves from the pressure side (PS) to the suction side (SS) via an increase in rotating speed. Under the same blowing ratio, the area-averaged film cooling effectiveness increases monotonously with an increase in rotating speed. Under the same rotating speed, the area-averaged film cooling effectiveness increases with the increase in blowing ratio. More details about the effects of the rotation speed and blowing ratio on the spanwise averaged film cooling effectiveness of the leading-edge region are shown in this study.

中文翻译:

旋转和鼓风比对扭曲涡轮叶片前缘气膜冷却影响的实验研究

摘要 使用热致变色液晶 (TLC) 技术进行了实验研究,以研究旋转和鼓风比对扭曲燃气轮机叶片前缘区域气膜冷却效率分布的影响。实验在三种转速下进行,包括400 rpm(正入射角)、550 rpm(零入射角)和700 rpm(负入射角)。平均吹塑比在 0.5 到 2.0 的范围内。CO2 用作冷却剂以确保冷却剂与主流的比率等于 1.56。基于涡轮出口主流速度和转子叶片弦长的雷诺数为 6.08 × 104。基于薄膜冷却效率分布分析转速和吹风比的影响。结果表明,转速在决定前缘分布的气膜冷却效率方面起着不可或缺的作用。随着转速的增加,滞流线的位置从压力侧 (PS) 移动到吸入侧 (SS)。在相同的吹气比下,面积平均薄膜冷却效率随着转速的增加而单调增加。在相同转速下,面积平均薄膜冷却效率随着吹气比的增加而增加。本研究显示了有关转速和吹风比对前缘区域展向平均气膜冷却效率影响的更多详细信息。随着转速的增加,滞流线的位置从压力侧 (PS) 移动到吸入侧 (SS)。在相同的吹气比下,面积平均薄膜冷却效率随着转速的增加而单调增加。在相同转速下,面积平均薄膜冷却效率随着吹气比的增加而增加。本研究显示了有关转速和吹风比对前缘区域展向平均气膜冷却效率影响的更多详细信息。随着转速的增加,滞流线的位置从压力侧 (PS) 移动到吸入侧 (SS)。在相同的吹气比下,面积平均薄膜冷却效率随着转速的增加而单调增加。在相同转速下,面积平均薄膜冷却效率随着吹气比的增加而增加。本研究显示了有关转速和吹风比对前缘区域展向平均气膜冷却效率影响的更多详细信息。面积平均薄膜冷却效率随着吹气比的增加而增加。本研究显示了有关转速和吹风比对前缘区域展向平均气膜冷却效率影响的更多详细信息。面积平均薄膜冷却效率随着吹气比的增加而增加。本研究显示了有关转速和吹风比对前缘区域展向平均气膜冷却效率影响的更多详细信息。
更新日期:2019-02-01
down
wechat
bug