当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deterministic Positioning of Colloidal Quantum Dots on Silicon Nitride Nanobeam Cavities
Nano Letters ( IF 9.6 ) Pub Date : 2018-09-25 00:00:00 , DOI: 10.1021/acs.nanolett.8b02764
Yueyang Chen 1 , Albert Ryou 1 , Max R. Friedfeld 2 , Taylor Fryett 1 , James Whitehead 1 , Brandi M. Cossairt 2 , Arka Majumdar 1, 3
Affiliation  

Engineering an array of precisely located cavity-coupled active media poses a major experimental challenge in the field of hybrid integrated photonics. We deterministically position solution-processed colloidal quantum dots (QDs) on high quality (Q)-factor silicon nitride nanobeam cavities and demonstrate light-matter coupling. By lithographically defining a window on top of an encapsulated cavity that is cladded in a polymer resist, and spin coating the QD solution, we can precisely control the placement of the QDs, which subsequently couple to the cavity. We show rudimentary control of the number of QDs coupled to the cavity by modifying the size of the window. Furthermore, we demonstrate Purcell enhancement and saturable photoluminescence in this QD-cavity platform. Finally, we deterministically position QDs on a photonic molecule and observe QD-coupled cavity supermodes. Our results pave the way for precisely controlling the number of QDs coupled to a cavity by engineering the window size, the QD dimension, and the solution chemistry and will allow advanced studies in cavity enhanced single photon emission, ultralow power nonlinear optics, and quantum many-body simulations with interacting photons.

中文翻译:

胶态量子点在氮化硅纳米束腔上的确定性定位

在混合集成光子学领域,设计一系列精确定位的腔耦合有源介质构成了主要的实验挑战。我们确定性地将溶液处理的胶体量子点(QD)定位在高质量(Q)因子的氮化硅纳米束腔上,并演示光-质耦合。通过光刻在包覆在聚合物抗蚀剂中的封装腔体顶部上光刻定义一个窗口,然后旋涂QD溶液,我们可以精确地控制QD的位置,然后将其耦合到腔体。我们通过修改窗口的大小显示了对耦合到腔体的QD数量的基本控制。此外,我们在此QD腔体平台上展示了​​赛尔增强和饱和光致发光。最后,我们确定性地将QD定位在光子分子上,并观察QD耦合腔超模。我们的结果为通过工程化窗口尺寸,QD尺寸和溶液化学性质来精确控制与腔耦合的QD数量铺平了道路,并将允许对腔增强的单光子发射,超低功率非线性光学和量子力学进行深入研究。光子相互作用的人体模拟。
更新日期:2018-09-25
down
wechat
bug