当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vertex‐Type Engineering of Pt–Cu–Rh Heterogeneous Nanocages for Highly Efficient Ethanol Electrooxidation
Advanced Materials ( IF 27.4 ) Pub Date : 2018-09-25 , DOI: 10.1002/adma.201804074
Kai Wang 1, 2 , Hongyu Du 1 , Rinrada Sriphathoorat 1 , Pei Kang Shen 1, 2
Affiliation  

Mastery over the architecture and elemental distribution of metal nanocrystals at the nanoscale can effectively tailor and improve their catalytic properties. Herein, the vertex‐type‐selective growth of metallic nanohorns on a central nanocrystal is constructed via a one‐pot solvothermal synthesis, despite the fact that the site‐selective epitaxy of the second phase proceeds on all the vertices of the seeds. The prepared vertex‐type‐selective Pt–Cu–Rh heterogeneous nanocages (HNCs) are composed of a Rh‐decorated Pt–Cu rhombic dodecahedral nanocage and six Pt–Cu–Rh nanohorns protruding from the {100} rather than the {111} vertices of rhombic dodecahedron. Impressively, the Pt–Cu–Rh HNCs exhibit 8.1 times higher specific and 6.8 times higher mass activity toward the ethanol oxidation reaction under acidic conditions than commercial Pt/C catalysts. Besides, the peak potential for CO oxidation on Pt–Cu–Rh HNCs (370.4 mV vs SCE) is 182.0 mV more negative than that on Pt/C, indicating the dramatically enhanced CO tolerance. The excellent electrocatalytic property is attributed to the synergistic effect between Pt, Cu, and Rh components, high specific surface area of nanocages and nanohorns, as well as abundant concave/convex sites and various high‐index facets around the surface.

中文翻译:

Pt–Cu–Rh异质纳米笼的顶点类型工程,用于高效乙醇电氧化

精通纳米级金属纳米晶体的结构和元素分布可以有效地定制和改善其催化性能。在这里,尽管第二阶段的定点外延在种子的所有顶点上进行,但中心纳米晶体上金属纳米角的顶点类型选择性生长是通过单锅溶剂热合成构建的。准备好的顶点类型选择性Pt-Cu-Rh异质纳米笼(HNC)由Rh装饰的Pt-Cu菱形十二面体纳米笼和六个从{100}而不是{111}伸出的Pt-Cu-Rh纳米角组成。菱形十二面体的顶点。令人印象深刻的是,Pt-Cu-Rh HNC在酸性条件下对乙醇氧化反应的比活性和商业活性比Pt / C催化剂高8.1倍,质量活性高6.8倍。此外,Pt–Cu–Rh HNC上的CO氧化峰电位(370.4 mV vs SCE)比Pt / C上的负峰高182.0 mV,表明CO耐受性显着提高。优异的电催化性能归因于Pt,Cu和Rh组分之间的协同作用,纳米笼和纳米角的高比表面积以及丰富的凹凸位置和表面周围的各种高折射率小面。
更新日期:2018-09-25
down
wechat
bug