当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the Caputo-Almeida fractional derivative.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.3 ) Pub Date : 2018-09-21 , DOI: 10.1016/j.jmbbm.2018.09.029
George Z Voyiadjis 1 , Wojciech Sumelka 2
Affiliation  

In this paper the human brain tissue constitutive model for monotonic loading is developed. The model in this work is based on the anisotropic hyperelasticity assumption (the transversely isotropic case) together with modelling of the evolving load-carrying capacity (scalar damage) whose change is governed by the Caputo-Almeida fractional derivative. This allows the brain constitutive law to include the memory during progressive damage, due to the characteristic time length scale which is an inherent attribute of the fractional operator. Furthermore, the rate dependence of the overall brain tissue model is included as well. The theoretical model is finally calibrated and validated with a set of experimental data.



中文翻译:

在各向异性超弹性框架内的大脑建模,其中时间分数损伤演化受Caputo-Almeida分数导数控制。

本文建立了单调加载的人脑组织本构模型。这项工作中的模型基于各向异性超弹性假设(横向各向同性的情况)以及不断变化的承载能力(标量破坏)的建模,其变化受Caputo-Almeida分数导数控制。由于特征时间长度标度是分数运算符的固有属性,因此这使得大脑本构定律可以在进行性损伤期间包括记忆。此外,还包括整个脑组织模型的速率依赖性。最后,通过一组实验数据对理论模型进行了校准和验证。

更新日期:2018-09-21
down
wechat
bug