当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A study on the tubular composite with tunable compression mechanical behavior inspired by wood cell.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.3 ) Pub Date : 2018-09-20 , DOI: 10.1016/j.jmbbm.2018.09.030
Che Zhao 1 , Luquan Ren 2 , Zhengyi Song 2 , Linhong Deng 1 , Qingping Liu 2
Affiliation  

Biological materials have fascinating mechanical properties built up from simple basic material blocks. It is worthwhile to learn how biological materials are constructed, and to apply the knowledge in advanced manufacturing, and to realize new materials by design. In this study, we chose the tubular cell in the soft wood as a biological prototype, and tried to mimic its intelligent construction principle to regulate the compression mechanical behavior through the helical structure. First, by using the multi-material three-dimensional printing technology, we fabricated a series of tubular composites with the helix fibers of a rigid plastic embedded into an elastomeric matrix. Then, through the uniaxial compression tests, we characterized the mechanical behavior of the specimens, having different fiber angle from 0 to 50 deg at constant volume fraction. The results showed that both stiffness and fracture toughness of the printed composite could be regulated effectively by adjusting the fiber angle of the helical structure. Moreover, the helical structure with high fiber angle is able to improve the compression stability of the tubular composite with big lumen. In addition, for the biomimetic composites, the volume fraction of the reinforcements should exceed 40%. Finally, we proposed a new structural design method by combining the reinforcements of different architectures into a double-layered configuration. The intelligent strategy is proven to balance the conflict between the stiffness and toughness of the composites to some extent, and without changing in the building constituents.



中文翻译:

受木细胞启发的具有可压缩压缩力学性能的管状复合材料的研究。

生物材料具有由简单的基本材料块构成的引人入胜的机械性能。值得学习生物材料的构造方法,并将其知识应用到先进制造中,并通过设计实现新材料。在这项研究中,我们选择软木中的管状细胞作为生物原型,并试图模仿其智能构造原理,以通过螺旋结构调节压缩机械性能。首先,通过使用多材料三维打印技术,我们制造了一系列管状复合材料,其中刚性塑料的螺旋纤维嵌入到弹性体基质中。然后,通过单轴压缩测试,我们表征了试样的机械性能,在恒定的体积分数下具有从0到50度的不同纤维角度。结果表明,通过调节螺旋结构的纤维角度,可以有效地调节复合材料的刚度和断裂韧性。而且,具有高纤维角的螺旋结构能够改善具有大内腔的管状复合材料的压缩稳定性。此外,对于仿生复合材料,增强材料的体积分数应超过40%。最后,我们提出了一种新的结构设计方法,将不同架构的加固组合成双层结构。事实证明,该智能策略可以在一定程度上平衡复合材料的刚度和韧性之间的冲突,并且不会改变建筑物的组成部分。结果表明,通过调节螺旋结构的纤维角度,可以有效地调节复合材料的刚度和断裂韧性。而且,具有高纤维角的螺旋结构能够改善具有大内腔的管状复合材料的压缩稳定性。此外,对于仿生复合材料,增强材料的体积分数应超过40%。最后,我们提出了一种新的结构设计方法,将不同架构的加固组合成双层结构。事实证明,该智能策略可以在一定程度上平衡复合材料的刚度和韧性之间的冲突,并且不会改变建筑物的组成部分。结果表明,通过调节螺旋结构的纤维角度,可以有效地调节复合材料的刚度和断裂韧性。而且,具有高纤维角的螺旋结构能够改善具有大内腔的管状复合材料的压缩稳定性。此外,对于仿生复合材料,增强材料的体积分数应超过40%。最后,我们提出了一种新的结构设计方法,将不同架构的加固组合成双层结构。事实证明,该智能策略可以在一定程度上平衡复合材料的刚度和韧性之间的冲突,并且不会改变建筑物的组成部分。

更新日期:2018-09-20
down
wechat
bug