当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programmable protein circuits in living cells
Science ( IF 44.7 ) Pub Date : 2018-09-20 , DOI: 10.1126/science.aat5062
Xiaojing J Gao 1 , Lucy S Chong 1 , Matthew S Kim 1 , Michael B Elowitz 1
Affiliation  

Building smarter synthetic biological circuits Synthetic genetic and biological regulatory circuits can enable logic functions to form the basis of biological computing; synthetic biology can also be used to control cell behaviors (see the Perspective by Glass and Alon). Andrews et al. used mathematical models and computer algorithms to combine standardized components and build programmable genetic sequential logic circuits. Such circuits can perform regulatory functions much like the biological checkpoint circuits of living cells. Circuits composed of interacting proteins could be used to bypass gene regulation, interfacing directly with cellular pathways without genome modification. Gao et al. engineered proteases that regulate one another, respond to diverse inputs that include oncogene activation, process signals, and conditionally activate responses such as those leading to cell death. This platform should facilitate development of “smart” therapeutic circuits for future biomedical applications. Science, this issue p. eaap8987, p. 1252; see also p. 1199 Engineered proteases enable programmable protein-level circuits that function in mammalian cells. Synthetic protein-level circuits could enable engineering of powerful new cellular behaviors. Rational protein circuit design would be facilitated by a composable protein-protein regulation system in which individual protein components can regulate one another to create a variety of different circuit architectures. In this study, we show that engineered viral proteases can function as composable protein components, which can together implement a broad variety of circuit-level functions in mammalian cells. In this system, termed CHOMP (circuits of hacked orthogonal modular proteases), input proteases dock with and cleave target proteases to inhibit their function. These components can be connected to generate regulatory cascades, binary logic gates, and dynamic analog signal-processing functions. To demonstrate the utility of this system, we rationally designed a circuit that induces cell death in response to upstream activators of the Ras oncogene. Because CHOMP circuits can perform complex functions yet be encoded as single transcripts and delivered without genomic integration, they offer a scalable platform to facilitate protein circuit engineering for biotechnological applications.

中文翻译:

活细胞中的可编程蛋白质回路

构建更智能的合成生物电路 合成基因和生物调节电路可以使逻辑功能形成生物计算的基础;合成生物学也可用于控制细胞行为(参见 Glass 和 Alon 的观点)。安德鲁斯等人。使用数学模型和计算机算法组合标准化组件并构建可编程遗传时序逻辑电路。这样的电路可以像活细胞的生物检查点电路一样执行调节功能。由相互作用的蛋白质组成的电路可用于绕过基因调控,直接与细胞通路连接,无需基因组修饰。高等人。相互调节的工程化蛋白酶对多种输入做出反应,包括致癌基因激活、处理信号、并有条件地激活反应,例如导致细胞死亡的反应。该平台应促进未来生物医学应用的“智能”治疗电路的开发。科学,这个问题 p。eaap8987,第。1252; 另见第。1199 工程蛋白酶实现了在哺乳动物细胞中发挥作用的可编程蛋白质水平回路。合成蛋白质水平电路可以实现强大的新细胞行为的工程化。合理的蛋白质电路设计将通过可组合的蛋白质-蛋白质调节系统来促进,其中单个蛋白质成分可以相互调节以创建各种不同的电路结构。在这项研究中,我们表明工程病毒蛋白酶可以作为可组合的蛋白质成分发挥作用,它们可以共同在哺乳动物细胞中实现多种电路级功能。在这个称为 CHOMP(黑客正交模块化蛋白酶电路)的系统中,输入蛋白酶与目标蛋白酶对接并切割目标蛋白酶以抑制其功能。可以连接这些组件以生成调节级联、二进制逻辑门和动态模拟信号处理功能。为了证明该系统的效用,我们合理地设计了一个回路,该回路可诱导细胞死亡以响应 Ras 癌基因的上游激活剂。由于 CHOMP 电路可以执行复杂的功能,但仍可编码为单个转录本,无需基因组整合即可交付,因此它们提供了一个可扩展的平台,以促进生物技术应用的蛋白质电路工程。可以连接这些组件以生成调节级联、二进制逻辑门和动态模拟信号处理功能。为了证明该系统的效用,我们合理地设计了一个回路,该回路可诱导细胞死亡以响应 Ras 癌基因的上游激活剂。由于 CHOMP 电路可以执行复杂的功能,但仍可编码为单个转录本,无需基因组整合即可交付,因此它们提供了一个可扩展的平台,以促进生物技术应用的蛋白质电路工程。可以连接这些组件以生成调节级联、二进制逻辑门和动态模拟信号处理功能。为了证明该系统的效用,我们合理地设计了一个回路,该回路可诱导细胞死亡以响应 Ras 癌基因的上游激活剂。由于 CHOMP 电路可以执行复杂的功能,但仍可编码为单个转录本,无需基因组整合即可交付,因此它们提供了一个可扩展的平台,以促进生物技术应用的蛋白质电路工程。
更新日期:2018-09-20
down
wechat
bug