当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Infrared Microscopy as a Probe of Composition within a Model Biofuel Cell Electrode Prepared from Trametes versicolor Laccase
ChemElectroChem ( IF 3.5 ) Pub Date : 2018-10-11 , DOI: 10.1002/celc.201801178
Ying Liang 1 , Rong Cai 2 , David P. Hickey 2 , Jay P. Kitt 2 , Joel M. Harris 2 , Shelley D. Minteer 2 , Carol Korzeniewski 1, 2
Affiliation  

Infrared microscopy was applied in the study of laccase biofuel cell electrodes that demonstrated high current and power densities traceable to the use of a low equivalent weight (EW), short side chain (Aquivion) ionomer in the catalyst layer. The electrodes were prepared from a biocatalyst ink composed of orientation‐directing anthracene‐modified multi‐walled carbon nanotubes (An‐MWCNTs) in a dispersion of ionomer exchanged by hydrophobic cations. The ink was applied to an electronically conductive carbon felt support that was hot‐pressed to a Nafion‐NRE 212 (51 μm thickness) membrane, forming the framework for an air‐breathing biofuel cell cathode. Infrared microscopy sampling was performed with the use of a micro‐attenuated total reflection probe that enabled spectra to be recorded from ∼32 μm diameter circular spatial regions on the materials investigated. Sensitivity to deformation of the soft polymer membrane‐based materials was assessed through trial experiments on pure membrane samples before approaching the compositionally more complex biofuel cell electrodes. In studies of laccase cathodes, infrared spectral features of enzyme, buffer anions and surrounding An‐MWCNTs were identified. Heterogeneity in the spatial distribution of components and unexpected bands traceable to insoluble copper salts were detected. The results suggest directions for improving electrode activity and bring to light needs for advancing quantitative interpretations.

中文翻译:

红外显微镜作为模型的燃料电池电极由杂色漆球菌制备的组成内的探针。

红外显微镜用于漆酶生物燃料电池电极的研究,该电极显示出高电流和功率密度,可追溯到在催化剂层中使用低当量重量(EW),短侧链(Aquivion)离聚物。电极是由生物催化剂墨水制备的,该墨水由定向导向的蒽改性的多壁碳纳米管(An-MWCNT)组成,分散在通过疏水性阳离子交换的离聚物中。将该油墨施加到导电的碳毡支撑物上,该支撑物被热压至Nafion-NRE 212(厚度为51μm)膜,从而形成了可呼吸空气的生物燃料电池阴极的框架。红外显微镜采样是通过使用微衰减全反射探头进行的,该探头能够在所研究的材料上记录直径约为32μm的圆形空间区域的光谱。在接近组成更复杂的生物燃料电池电极之前,通过对纯膜样品的试验来评估软质聚合物膜基材料对变形的敏感性。在漆酶阴极的研究中,鉴定了酶,缓冲液阴离子和周围的An-MWCNT的红外光谱特征。检测到了组分在空间分布上的异质性以及可追溯至不溶性铜盐的意外谱带。结果提示了改善电极活性的方向,并提出了进行定量解释的需求。在接近组成更复杂的生物燃料电池电极之前,通过对纯膜样品的试验来评估软质聚合物膜基材料对变形的敏感性。在漆酶阴极的研究中,鉴定了酶,缓冲液阴离子和周围的An-MWCNT的红外光谱特征。检测到了组分在空间分布上的异质性以及可追溯至不溶性铜盐的意外谱带。结果提示了改善电极活性的方向,并提出了进行定量解释的需求。在接近组成更复杂的生物燃料电池电极之前,通过对纯膜样品的试验来评估软质聚合物膜基材料对变形的敏感性。在漆酶阴极的研究中,鉴定了酶,缓冲液阴离子和周围的An-MWCNT的红外光谱特征。检测到了组分在空间分布上的异质性以及可追溯至不溶性铜盐的意外谱带。结果提示了改善电极活性的方向,并提出了进行定量解释的需求。确定了缓冲液阴离子和周围的An-MWCNT。检测到了组分在空间分布上的异质性以及可追溯至不溶性铜盐的意外谱带。结果提示了改善电极活性的方向,并提出了进行定量解释的需求。确定了缓冲液阴离子和周围的An-MWCNT。检测到了组分在空间分布上的异质性以及可追溯至不溶性铜盐的意外谱带。结果提示了改善电极活性的方向,并提出了进行定量解释的需求。
更新日期:2018-10-11
down
wechat
bug