当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interface Structure and Evolution of Dinaphthothienothiophene (DNTT) Films on Noble Metal Substrates
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2018-09-19 , DOI: 10.1002/admi.201800920
Maximilian Dreher 1 , Daniel Bischof 1 , Felix Widdascheck 1 , Andrea Huttner 1 , Tobias Breuer 1 , Gregor Witte 1
Affiliation  

Dinaphthothienothiophene (DNTT) is a promising new organic semiconductor which combines high charge carrier mobility with chemical robustness. Although the properties of organic electronic devices are largely determined by the interfaces with electrodes, the interface between DNTT and metals is hardly studied so far. Here, the interface structures of DNTT on Ag(111) and multilayers are examined and they are compared with films grown on polycrystalline and (111) surfaces of silver and gold. In the seedlayer regime, two different interface structures formed by exclusively flatlying molecules and a herringbone arrangement are identified for increased coverages. Combining low energy electron diffraction, scanning tunneling microscopy, and X‐ray absorption measurements, precise structure data for both phases are derived and their respective adsorption energies are determined to explain why both phases are formed. On all examined surfaces, DNTT multilayers consist of discrete fibers reflecting a notable dewetting but exhibit different molecular orientations: Molecules are recumbently arranged on the (111) surfaces, but uprightly oriented on polycrystalline surfaces. Complementary work function measurements yield rather similar values for DNTT monolayers on single‐ and polycrystalline metal substrates, while distinct differences are found for thicker films. The results appear important for improved transistor geometries, in particular vertical field‐effect transistors.

中文翻译:

贵金属基体上二萘并噻吩并噻吩(DNTT)薄膜的界面结构和演变

二萘并噻吩并噻吩(DNTT)是一种有前途的新型有机半导体,将高载流子迁移率与化学稳定性相结合。尽管有机电子器件的性能在很大程度上取决于与电极的界面,但到目前为止,几乎不研究DNTT与金属之间的界面。在这里,检查了DNTT在Ag(111)和多层膜上的界面结构,并将它们与在银和金的多晶和(111)表面上生长的膜进行了比较。在种子层状态中,确定了通过仅使分子扁平化和人字形排列而形成的两个不同的界面结构,以提高覆盖率。将低能电子衍射,扫描隧道显微镜和X射线吸收测量相结合,得出了两相的精确结构数据,并确定了它们各自的吸附能,以解释为什么形成两相。在所有检查的表面上,DNTT多层膜均由离散的纤维组成,这些纤维反映出明显的去湿性,但表现出不同的分子取向:分子倾斜地排列在(111)表面上,但直立地取向在多晶表面上。互补功函数的测量对于单晶和多晶金属基底上的DNTT单层产生了相当相似的值,而对于较厚的膜则发现了明显的差异。对于改善晶体管的几何形状,特别是垂直场效应晶体管,结果似乎很重要。DNTT多层膜由离散的纤维组成,这些纤维反映出明显的去湿性,但表现出不同的分子取向:分子倾斜地排列在(111)表面上,但直立地排列在多晶表面上。互补功函数的测量对于单晶和多晶金属基底上的DNTT单层产生了相当相似的值,而对于较厚的膜则发现了明显的差异。对于改善晶体管的几何形状,特别是垂直场效应晶体管,结果似乎很重要。DNTT多层膜由离散的纤维组成,这些纤维反映出明显的去湿性,但表现出不同的分子取向:分子倾斜地排列在(111)表面上,但直立地排列在多晶表面上。互补功函数的测量对于单晶和多晶金属基底上的DNTT单层产生了相当相似的值,而对于较厚的膜则发现了明显的差异。对于改善晶体管的几何形状,特别是垂直场效应晶体管,结果似乎很重要。而厚膜则有明显差异。对于改善晶体管的几何形状,特别是垂直场效应晶体管,结果似乎很重要。而厚膜则有明显差异。对于改善晶体管的几何形状,特别是垂直场效应晶体管,结果似乎很重要。
更新日期:2018-09-19
down
wechat
bug