当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrolyte Solvation Structure at Solid–Liquid Interface Probed by Nanogap Surface-Enhanced Raman Spectroscopy
ACS Nano ( IF 15.8 ) Pub Date : 2018-09-18 00:00:00 , DOI: 10.1021/acsnano.8b05038
Guang Yang 1 , Ilia N. Ivanov 1 , Rose E. Ruther 1 , Robert L. Sacci 1 , Veronika Subjakova 2 , Daniel T. Hallinan 3 , Jagjit Nanda 1
Affiliation  

Understanding the fundamental factors that drive ion solvation structure and transport is key to design high-performance, stable battery electrolytes. Reversible ion solvation and desolvation are critical to the interfacial charge-transfer process across the solid–liquid interface as well as the resulting stability of the solid electrolyte interphase. Herein, we report the study of Li+ salt solvation structure in aprotic solution in the immediate vicinity (∼20 nm) of the solid electrode–liquid interface using surface-enhanced Raman spectroscopy (SERS) from a gold nanoparticle (Au NP) monolayer. The plasmonic coupling between Au NPs produces strong electromagnetic field enhancement in the gap region, leading to a 5 orders of magnitude increase in Raman intensity for electrolyte components and their mixtures namely, lithium hexafluorophosphate, fluoroethylene carbonate, ethylene carbonate, and diethyl carbonate. Further, we estimate and compare the lithium-ion solvation number derived from SERS, standard Raman spectroscopy, and Fourier transform infrared spectroscopy experiments to monitor and ascertain the changes in the solvation shell diameter in the confined nanogap region where there is maximum enhancement of the electric field. Our findings provide a multimodal spectroscopic approach to gain fundamental insights into the molecular structure of the electrolyte at the solid–liquid interface.

中文翻译:

纳米间隙表面增强拉曼光谱探测固液界面上的电解质溶剂化结构

了解驱动离子溶剂化结构和传输的基本因素是设计高性能,稳定的电池电解质的关键。可逆的离子溶剂化和去溶剂化对于跨固液界面的界面电荷转移过程以及固体电解质界面的稳定性至关重要。在这里,我们报告李+的研究使用表面增强拉曼光谱(SERS)从金纳米粒子(Au NP)单层中在固体电极-液体界面的紧邻附近(约20 nm)的非质子溶液中形成盐溶剂化结构。Au NP之间的等离子耦合在间隙区域产生强大的电磁场增强,从而导致电解质组分及其混合物(六氟磷酸锂,氟代碳酸亚乙酯,碳酸亚乙酯和碳酸二乙酯)的拉曼强度提高5个数量级。此外,我们估算并比较了从SERS,标准拉曼光谱,傅里叶变换红外光谱实验和傅立叶变换红外光谱实验,以监测和确定电场最大增强的受限纳米间隙区域中溶剂化壳直径的变化。我们的发现提供了一种多峰光谱方法,以获取有关固液界面上电解质分子结构的基本见解。
更新日期:2018-09-18
down
wechat
bug