当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Penetration time of hydrophilic micron particles impacting into an unconfined planar gas-liquid interface
Chemical Engineering Science ( IF 4.7 ) Pub Date : 2019-01-01 , DOI: 10.1016/j.ces.2018.09.027
Shi-Jie Zhu , Run-Zhe Liu , Tian Wang , Yong-Jian Niu , Hai-Feng Lu , Xue-Li Chen

Abstract The penetration time of hydrophilic micron particles during the submergence process is experimentally studied by using a high-speed camera. The effects of impact velocity (0.5 m/s ≤ up0 ≤ 1.48 m/s), surface tension (44.3 mN/m ≤ γ ≤ 73.9 mN/m) and dynamic viscosity (1.31 mPa·s ≤ μ ≤ 2.13 mPa·s) on the penetration time have been investigated. The penetration time for different fluids can be expressed as two different functions with the increase of impact velocity, which are in a good accordance with the experimental results. The results show that the penetration time exhibits a power function with particle size at lower impact velocity (up0 ≤ 0.5 m/s), which increases with the surface tension decreasing and dynamic viscosity increasing. As the impact velocity increases, the penetration time can be expressed as a linear function of particle size. When the impact velocity exceeds the transition velocity (up0 ≈ 0.74 m/s), the penetration time decreases at first and then increases with the decreasing surface tension, while changing little with the increase of dynamic viscosity. The confinement effect of cavity induced by the Marangoni stress and viscous stress has been analyzed in the different surface tension and dynamic viscosity solutions, respectively. The competitive motion of the three-phase contact line (TPCL) width and interfacial deformation width is the key factor that controls the capillary force, further influencing the penetration time.

中文翻译:

亲水微米颗粒撞击无约束平面气液界面的渗透时间

摘要 利用高速相机对浸没过程中亲水微米颗粒的渗透时间进行了实验研究。冲击速度(0.5 m/s ≤ up0 ≤ 1.48 m/s)、表面张力(44.3 mN/m ≤ γ ≤ 73.9 mN/m)和动态粘度(1.31 mPa·s ≤ μ ≤ 2.13 mPa·s)的影响对渗透时间进行了研究。随着冲击速度的增加,不同流体的穿透时间可以表示为两个不同的函数,与实验结果吻合较好。结果表明,在较低的冲击速度(up0≤0.5m/s)下,渗透时间与粒径呈幂函数关系,随着表面张力的降低和动态粘度的增加而增加。随着冲击速度的增加,渗透时间可以表示为粒径的线性函数。当冲击速度超过过渡速度(up0≈0.74 m/s)时,渗透时间随着表面张力的降低先减少后增加,而随着动力粘度的增加变化不大。分别在不同的表面张力和动力粘度溶液中分析了由Marangoni应力和粘性应力引起的空腔的约束效应。三相接触线(TPCL)宽度和界面变形宽度的竞争运动是控制毛细力的关键因素,进一步影响渗透时间。渗透时间随着表面张力的降低先减少后增加,而随着动力粘度的增加变化不大。分别在不同的表面张力和动力粘度溶液中分析了由Marangoni应力和粘性应力引起的空腔的约束效应。三相接触线(TPCL)宽度和界面变形宽度的竞争运动是控制毛细力的关键因素,进一步影响渗透时间。渗透时间随着表面张力的降低先减少后增加,而随着动力粘度的增加变化不大。分别在不同的表面张力和动力粘度溶液中分析了由Marangoni应力和粘性应力引起的空腔的约束效应。三相接触线(TPCL)宽度和界面变形宽度的竞争运动是控制毛细力的关键因素,进一步影响渗透时间。
更新日期:2019-01-01
down
wechat
bug