当前位置: X-MOL 学术Ecotox. Environ. Saf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adsorptive mercaptan removal of liquid phase using nanoporous graphene: Equilibrium, kinetic study and DFT calculations
Ecotoxicology and Environmental Safety ( IF 6.8 ) Pub Date : 2018-09-14 , DOI: 10.1016/j.ecoenv.2018.08.110
Seyyed Salar Meshkat , Omid Tavakoli , Alimorad Rashidi , Mehdi D. Esrafili

This research investigated the adsorption of tertiary butyl mercaptan (TBM) from liquid phases by using nanoporous graphene. Nanoporous graphene synthesized through chemical vapor deposition method was characterized using Brunauer–Emmett–Teller method, transmission electron microscopy, field-emission scanning microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy techniques. The TBM adsorption equilibrium was investigated by using Langmuir, Freundlich, and Tempkin models. The obtained results were in good agreement with the Freundlich isotherm. The adsorption kinetics of this process was modeled by the pseudo-first-order, pseudo-second-order, and intraparticle models. The adsorption rate was obtained according to the pseudo-second-order model. The satisfactory results indicated that nanoporous graphene can be used as a good carbon nanostructure sorbent in mercaptan removal. The process reduced the sulfur content from 300 ppm to less than 10 ppm which was the standard level in environmental regulations. The capacity for TBM removal was achieved at 4.4 gr S/gr adsorbent. The desulfurization efficiency was revealed about 96.3% for nanoporous graphene at 298 K and 24 h. Moreover, density functional theory calculations were used to determine the stable configuration, adsorption energy, and electronic structure of different configurations of TBM adsorbed onto a graphene surface. TBM physically adsorbed onto the graphene surface with adsorption energies of approximately − 25 kJ/mol was indicated from DFT calculations.



中文翻译:

使用纳米多孔石墨烯的吸附性硫醇去除液相:平衡,动力学研究和DFT计算

这项研究调查了使用纳米多孔石墨烯从液相中吸附叔丁基硫醇(TBM)。通过化学气相沉积法合成的纳米多孔石墨烯采用Brunauer-Emmett-Teller方法,透射电子显微镜,场发射扫描显微镜,X射线衍射和傅里叶变换红外光谱技术进行了表征。使用Langmuir,Freundlich和Tempkin模型研究了TBM吸附平衡。所得结果与Freundlich等温线吻合良好。该过程的吸附动力学是通过拟一阶,拟二阶和粒子内模型建模的。吸附速率是根据拟二级模型获得的。令人满意的结果表明,纳米孔石墨烯可以用作硫醇去除中的良好碳纳米结构吸附剂。该方法将硫含量从300 ppm降至低于10 ppm,这是环境法规中的标准水平。在4.4 gr S / gr吸附剂下达到了去除TBM的能力。纳米多孔石墨烯在298 K和24 h时的脱硫效率约为96.3%。此外,使用密度泛函理论计算来确定吸附到石墨烯表面上的TBM的不同构型的稳定构型,吸附能和电子结构。通过DFT计算表明以约-25 kJ / mol的吸附能物理吸附在石墨烯表面上的TBM。该方法将硫含量从300 ppm降至低于10 ppm,这是环境法规中的标准水平。在4.4 gr S / gr吸附剂下达到了去除TBM的能力。纳米多孔石墨烯在298 K和24 h时的脱硫效率约为96.3%。此外,使用密度泛函理论计算来确定吸附到石墨烯表面上的TBM的不同构型的稳定构型,吸附能和电子结构。通过DFT计算表明以约-25 kJ / mol的吸附能物理吸附在石墨烯表面上的TBM。该方法将硫含量从300 ppm降至低于10 ppm,这是环境法规中的标准水平。在4.4 gr S / gr吸附剂下达到了去除TBM的能力。纳米多孔石墨烯在298 K和24 h时的脱硫效率约为96.3%。此外,使用密度泛函理论计算来确定吸附到石墨烯表面上的TBM的不同构型的稳定构型,吸附能和电子结构。通过DFT计算表明,物理吸附在石墨烯表面的TBM具有约− 25 kJ / mol的吸附能。纳米多孔石墨烯在298 K和24 h时的脱硫效率约为96.3%。此外,使用密度泛函理论计算来确定吸附到石墨烯表面上的TBM的不同构型的稳定构型,吸附能和电子结构。通过DFT计算表明以约-25 kJ / mol的吸附能物理吸附在石墨烯表面上的TBM。纳米多孔石墨烯在298 K和24 h时的脱硫效率约为96.3%。此外,使用密度泛函理论计算来确定吸附到石墨烯表面上的TBM的不同构型的稳定构型,吸附能和电子结构。通过DFT计算表明,物理吸附在石墨烯表面的TBM具有约− 25 kJ / mol的吸附能。

更新日期:2018-09-14
down
wechat
bug