当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Run‐to‐run control of PECVD systems: Application to a multiscale three‐dimensional CFD model of silicon thin film deposition
AIChE Journal ( IF 3.7 ) Pub Date : 2018-10-04 , DOI: 10.1002/aic.16400
Marquis Crose 1 , Weiqi Zhang 1 , Anh Tran 1 , Panagiotis D. Christofides 2
Affiliation  

Deposition of amorphous silicon thin films via plasma‐enhanced chemical vapor deposition (PECVD) and batch‐to‐batch operation under run‐to‐run control of the associated chambered reactor are presented in this work using a recently developed multiscale, three‐dimensional in space, computational fluid dynamics model. Macroscopic reactor scale behaviors are linked to the microscopic growth of amorphous silicon thin films using a dynamic boundary which is updated at each time step of the transient in‐batch simulations. This novel workflow is distributed across 64 parallel computation nodes in order to reduce the significant computational demands of batch‐to‐batch operation and to allow for the application and evaluation in both radial and azimuthal directions across the wafer of a benchmark, run‐to‐run based control strategy. Using 10 successive batch deposition cycles, the exponentially weighted moving average algorithm, an industrial standard, is demonstrated to drive all wafer regions to within 1% of the desired thickness set‐point in both radial and azimuthal directions across the wafer surface. This is the first demonstration of run‐to‐run control in reducing azimuthal film nonuniformity. Additionally, thin film uniformity is shown to be improved for poorly optimized PECVD geometries by manipulating the substrate temperature alone, without the need for re‐tooling of the equipment. © 2018 American Institute of Chemical Engineers AIChE J, 65: e16400 2019

中文翻译:

PECVD系统的运行间控制:在硅薄膜沉积的多尺度三维CFD模型中的应用

在这项工作中,使用了最近开发的多尺度,三维反应堆,通过等离子增强化学气相沉积(PECVD)进行的非晶硅薄膜沉积以及相关腔室反应器在运行间控制下的逐批运行操作进行了介绍。空间,计算流体动力学模型。使用动态边界将宏观反应堆规模行为与非晶硅薄膜的微观生长联系起来,该动态边界在瞬态批内模拟的每个时间步均会更新。这种新颖的工作流程分布在64个并行计算节点上,以减少批次间操作的显着计算需求,并允许在整个晶圆上以径向,方位角为基准进行运行和评估的应用和评估。基于运行的控制策略。通过使用10个连续的分批沉积循环,证明了一种指数加权移动平均算法(一种工业标准)可以在整个晶片表面上沿径向和方位角将所有晶片区域驱动到所需厚度设定点的1%以内。这是减少膜方位角不均匀性的逐个运行控制的首次演示。此外,仅通过控制基板温度即可改善薄膜CVD的均匀性,从而优化PECVD几何形状,而无需重新安装设备。©2018美国化学工程师学会 被证明可以在整个晶圆表面的径向和方位角方向上将所有晶圆区域驱动到所需厚度设定点的1%以内。这是减少膜方位角不均匀性的逐个运行控制的首次演示。此外,仅通过控制基板温度即可改善薄膜CVD的均匀性,从而优化PECVD几何形状,而无需重新安装设备。©2018美国化学工程师学会 被证明可以在整个晶圆表面的径向和方位角方向上将所有晶圆区域驱动到所需厚度设定点的1%以内。这是减少膜方位角不均匀性的逐个运行控制的首次演示。此外,仅通过控制基板温度即可改善薄膜CVD的均匀性,从而优化PECVD几何形状,而无需重新安装设备。©2018美国化学工程师学会AIChE J,65:e16400 2019
更新日期:2018-10-04
down
wechat
bug