当前位置: X-MOL 学术Electroanalysis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spectroelectrochemical Sensor for Spectroscopically Hard‐to‐detect Metals by in situ Formation of a Luminescent Complex Using Ru(II) as a Model Compound
Electroanalysis ( IF 2.7 ) Pub Date : 2018-09-14 , DOI: 10.1002/elan.201800427
Amanda M. Lines 1, 2 , Joshua D. Warner 1 , William R. Heineman 3 , Sue B. Clark 1, 2 , Samuel A. Bryan 1
Affiliation  

Fast, robust, and cost‐effective means of detecting spectroscopically inactive metal species are necessary for field detection and applications within a variety of areas including industry and the nuclear safeguards fields. A sensor based on spectroelectrochemistry is an excellent candidate to meet these needs as it provides improved selectivity for specifically quantifying metal ions by simultaneously monitoring at least two physio‐chemical properties. Ruthenium was chosen as a model system for this study due to its spectroscopic and electrochemical characteristics as well as its relevance within the fuel cycle and industrial fields. Aqueous Ru displays multiple redox couples in which all available oxidation states have poor sensitivity for detection by visible absorption spectroscopy because of the low molar absorptivities. Ru can, however, form complexes with sensitizing ligands such as 2,2′‐bipyridine, where the resulting [Ru(ligand)3]2+ complex displays a red luminescence with a high quantum yield of emission. This significantly improves detection limits for Ru and allows for the spectroelectrochemical detection of the otherwise hard‐to‐detect metal ion. This work explores the in‐situ generation of Ru(bpy)3 complexes in simulated field samples and their subsequent spectroelectrochemical sensing using our sensor methodology.

中文翻译:

以Ru(II)为模型化合物的发光配合物原位形成光谱学上难以检测的金属的光谱电化学传感器

快速,可靠且具有成本效益的检测光谱惰性金属种类的方法对于包括工业和核保障领域在内的多个领域的现场检测和应用是必不可少的。基于光谱电化学的传感器是满足这些需求的极佳候选者,因为它通过同时监测至少两个物理化学性质,提供了改进的选择性,可用于特异性定量金属离子。由于钌的光谱和电化学特性以及其在燃料循环和工业领域中的相关性,因此选择钌作为本研究的模型系统。Ru水溶液显示多个氧化还原对,其中所有可用的氧化态由于低的摩尔吸收率而对可见光吸收光谱法检测的灵敏度较差。茹可以,但是3 ] 2+配合物显示红色发光,且具有较高的发射量子产率。这显着提高了Ru的检出限,并允许对原本难以检出的金属离子进行光谱电化学检测。这项工作探索了在模拟的现场样品中Ru(bpy)3配合物的现场生成以及使用我们的传感器方法进行的随后的光谱电化学传感。
更新日期:2018-09-14
down
wechat
bug