当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide
Nature ( IF 50.5 ) Pub Date : 2018-09-01 , DOI: 10.1038/s41586-018-0490-7
R Lebrun 1 , A Ross 1, 2 , S A Bender 3 , A Qaiumzadeh 4 , L Baldrati 1 , J Cramer 1, 2 , A Brataas 4 , R A Duine 3, 4, 5 , M Kläui 1, 2, 4
Affiliation  

Spintronics relies on the transport of spins, the intrinsic angular momentum of electrons, as an alternative to the transport of electron charge as in conventional electronics. The long-term goal of spintronics research is to develop spin-based, low-dissipation computing-technology devices. Recently, long-distance transport of a spin current was demonstrated across ferromagnetic insulators1. However, antiferromagnetically ordered materials, the most common class of magnetic materials, have several crucial advantages over ferromagnetic systems for spintronics applications2: antiferromagnets have no net magnetic moment, making them stable and impervious to external fields, and can be operated at terahertz-scale frequencies3. Although the properties of antiferromagnets are desirable for spin transport4–7, indirect observations of such transport indicate that spin transmission through antiferromagnets is limited to only a few nanometres8–10. Here we demonstrate long-distance propagation of spin currents through a single crystal of the antiferromagnetic insulator haematite (α-Fe2O3)11, the most common antiferromagnetic iron oxide, by exploiting the spin Hall effect for spin injection. We control the flow of spin current across a haematite–platinum interface—at which spins accumulate, generating the spin current—by tuning the antiferromagnetic resonance frequency using an external magnetic field12. We find that this simple antiferromagnetic insulator conveys spin information parallel to the antiferromagnetic Néel order over distances of more than tens of micrometres. This mechanism transports spins as efficiently as the most promising complex ferromagnets1. Our results pave the way to electrically tunable, ultrafast, low-power, antiferromagnetic-insulator-based spin-logic devices6,13 that operate without magnetic fields at room temperature.Tunable spin transport over long distances is demonstrated through the antiferromagnetic insulator haematite, paving the way to the development of spin-logic devices based on antiferromagnetic insulators.

中文翻译:

晶体反铁磁氧化铁中可调节的长距离自旋输运

自旋电子学依赖于自旋的传输,即电子的固有角动量,作为传统电子学中电子电荷传输的替代方案。自旋电子学研究的长期目标是开发基于自旋的低耗散计算技术设备。最近,自旋电流在铁磁绝缘体上的长距离传输被证明。然而,反铁磁有序材料是最常见的一类磁性材料,与自旋电子学应用中的铁磁系统相比,具有几个关键优势2:反铁磁体没有净磁矩,使其稳定且不受外部场影响,并且可以在太赫兹级频率下运行3 。尽管反铁磁体的特性对于自旋传输来说是理想的4-7,但对这种传输的间接观察表明,通过反铁磁体的自旋传输仅限于几纳米8-10。在这里,我们通过利用自旋霍尔效应进行自旋注入,展示了自旋电流通过反铁磁绝缘体赤铁矿 (α-Fe2O3)11(最常见的反铁磁氧化铁)单晶的长距离传播。我们通过使用外部磁场调节反铁磁共振频率来控制自旋流穿过赤铁矿-铂界面的流动(自旋在该界面处积累,产生自旋流)。我们发现这种简单的反铁磁绝缘体在超过数十微米的距离上传递与反铁磁尼尔级平行的自旋信息。这种机制与最有前途的复杂铁磁体一样有效地传输自旋。我们的研究结果为电可调、超快、低功耗、基于反铁磁绝缘体的自旋逻辑器件6,13铺平了道路,这些器件在室温下无需磁场即可运行。通过反铁磁绝缘体赤铁矿证明了长距离可调谐自旋传输,铺平了道路基于反铁磁绝缘体的自旋逻辑器件的开发之路。
更新日期:2018-09-01
down
wechat
bug