当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Entropy Engineering of SnTe: Multi‐Principal‐Element Alloying Leading to Ultralow Lattice Thermal Conductivity and State‐of‐the‐Art Thermoelectric Performance
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2018-09-10 , DOI: 10.1002/aenm.201802116
Lipeng Hu 1, 2 , Yang Zhang 3 , Haijun Wu 3 , Junqin Li 1 , Yu Li 1 , Myles Mckenna 4 , Jian He 4 , Fusheng Liu 1 , Stephen John Pennycook 3 , Xierong Zeng 1, 2
Affiliation  

The core effects of high entropy alloys distinguish high entropy alloying from ordinary multielement doping, allowing for a synergy of band structure and microstructure engineering. Here, a systematic synthesis, structural, theoretical, and thermoelectric study of multi‐principal‐element‐alloyed SnTe is reported. Toward high thermoelectric performance, the entropy of mixing needs to be high enough to make good use of the core effects, yet low enough to minimize the degradation of carrier mobility. It is demonstrated that high entropy of mixing extends the solubility limit of Mn while retaining the lattice symmetry, the enhanced Mn content elicits multiscale microstructures. The resulting ultralow lattice thermal conductivity of ≈0.32 W m−1 K−1 at 900 K in (Sn0.7Ge0.2Pb0.1)0.75Mn0.275Te is not only lower than the amorphous limit of SnTe but also comparable to those thermoelectric materials with complex crystal structures and strong anharmonicity. Co‐alloying of (Sn,Ge,Pb,Mn) also enhances band convergence and band effective mass, yielding good power factors. Further tuning of the Sn excess yields a state‐of‐the‐art zT ≈1.42 at 900 K in (Sn0.74Ge0.2Pb0.1)0.75Mn0.275Te. In view of the simple face‐centered‐cubic structure of SnTe‐based alloys, these results attest to the efficacy of entropy engineering toward a new paradigm of high entropy thermoelecrics.

中文翻译:

SnTe的熵工程:多元素合金化导致超低晶格导热率和最新的热电性能

高熵合金的核心效应将高熵合金与普通的多元素掺杂区分开来,从而实现了能带结构和微观结构工程的协同作用。在这里,对多主要元素合金的SnTe进行了系统的综合,结构,理论和热电研究的报道。为了实现高热电性能,混合熵需要足够高以充分利用核心效应,但又要足够低以最小化载流子迁移率的下降。证明了高混合熵在保持晶格对称性的同时扩展了Mn的溶解度极限,提高的Mn含量引发了多尺度的微观结构。≈0.32脉冲W M的所得超低晶格热导率-1 ķ -1在900 K(Sn的0.7Ge 0.2 Pb 0.10.75 Mn 0.275 Te不仅低于SnTe的非晶极限,而且还可以与具有复杂晶体结构和强非谐性的热电材料相媲美。(Sn,Ge,Pb,Mn)的共合金化还可以增强能带收敛性和能带有效质量,从而产生良好的功率因数。Sn过量的进一步调节在(Sn 0.74 Ge 0.2 Pb 0.10.75 Mn 0.275(900 K in)时产生最新的zT≈1.42特。鉴于SnTe基合金的简单面心立方结构,这些结果证明了熵工程对于高熵热电学的新范式的有效性。
更新日期:2018-09-10
down
wechat
bug