当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H2 generation
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2018-09-08 , DOI: 10.1016/j.jcis.2018.09.025
Pengfei Chen , Pingxing Xing , Zhiqiang Chen , Xin Hu , Hongjun Lin , Leihong Zhao , Yiming He

This paper is designed for elevating the photocatalytic H2-evoultion performance of g-C3N4 through the modification of AgNbO3 nanocubes. Via the microwave heating method, g-C3N4 was in-situ formed on AgNbO3 surface to fabricate a close contact between the two semiconductors in forty minutes. X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS) experiments were performed to confirm the binary structure of the synthesized AgNbO3/g-C3N4 composite. N2-adsorption and visible diffuse reflection spectroscopy (DRS) analyses indicated that the addition of AgNbO3 to g-C3N4 showed nearly negligible influence on the specific surface area and the optical property. Photoluminescence (PL) spectroscopy experiment suggested that the AgNbO3/g-C3N4 displayed reduced PL emission and longer lifetime of photoexcited charge carriers than g-C3N4, which could be ascribed to the suitable band potential and the intimate contact of g-C3N4 and AgNbO3. This result was also confirmed by the transient photocurrent response experiment. The influence of the enhanced charge separation was displayed in their photocatalytic reaction. AgNbO3/g-C3N4 sample showed enhanced performance in photocatalytic H2-generation under visible light illumination. The H2-evolution rate is determined to be 88 μmol·g−1·h−1, which reaches 2.0 times of g-C3N4. This study provides a feasible and rapid approach to fabricate g-C3N4 based composite.



中文翻译:

微波加热法原位合成AgNbO 3 / gC 3 N 4光催化剂有效光催化生成H 2

本文旨在通过修饰AgNbO 3纳米立方体来提高gC 3 N 4的光催化H 2驱除性能。通过微波加热方法,在AgNbO 3表面上原位形成gC 3 N 4,以在四十分钟内制造出两个半导体之间的紧密接触。进行了X射线衍射(XRD),傅里叶变换红外(FT-IR),X射线光电子能谱(XPS)实验,以确认合成的AgNbO 3 / gC 3 N 4复合材料的二元结构。N 2吸附和可见漫反射光谱法(DRS)分析表明,向gC 3 N 4中添加AgNbO 3对比表面积和光学性质的影响几乎可以忽略不计。光致发光(PL)光谱实验建议AgNbO 3 / GC 3 Ñ 4显示的缩小PL发射和光激发电荷载体的比GC更长的寿命3 Ñ 4,这可以归因于的合适的带潜力和GC的紧密接触3 Ñ 4和AgNbO 3。瞬态光电流响应实验也证实了这一结果。在它们的光催化反应中显示出增强的电荷分离的影响。AgNbO 3 / gC 3 N 4样品在可见光照射下表现出增强的光催化H 2生成性能。H 2的演化速率被确定为88μmol·g -1 ·h -1,达到gC 3 N 4的2.0倍。这项研究提供了一种可行且快速的方法来制造基于gC 3 N 4的复合材料。

更新日期:2018-09-08
down
wechat
bug