当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient strategy for significantly decreasing overpotentials of hydrogen generation via oxidizing small molecules at flexible bifunctional CoSe electrodes
Journal of Power Sources ( IF 8.1 ) Pub Date : 2018-09-05 , DOI: 10.1016/j.jpowsour.2018.08.085
Zonghua Pu , Ibrahim Saana Amiinu , Fangliang Gao , Zhenzhu Xu , Chengtian Zhang , Wenqiang Li , Guoqiang Li , Shichun Mu

In this study, we adopt an efficient strategy to replace conventional oxygen evolution reaction with small molecules thermodynamically more readily oxidizable species. Hydrazine, ethanol, glycol and urea can be easily oxidized than oxygen evolution reaction, but the lack of low-cost and efficient small molecules oxidation reaction electrocatalysts places constraints on their development. Herein, a flexible electrode based on cobalt selenide nanosheet arrays supported on carbon fiber paper (CoSe/CFP) is prepared through a two-step approach. The as obtained CoSe/CFP is efficient for small molecules electrooxidation reaction at the anode and hydrogen evolution reaction at the cathode. Due to the easier oxidation of hydrazine than other species, the hydrazine oxidation reaction (HzOR) is investigated in details. An assembled electrolytic cell based on the hydrazine oxidation reaction and hydrogen evolution reaction (HER) electrodes provides a current density of 50 mA cm-2 at a cell voltage of 0.5 V, long-term durability and 98% Faradaic efficiencies. This novel strategy can greatly lower the imput cell voltage than that under full water splitting (1.6–2.0 V) for cost-effective and energy-saving hydrogen production.



中文翻译:

通过在柔性双功能CoSe电极上氧化小分子来显着降低氢生成过电势的有效策略

在这项研究中,我们采用一种有效的策略,以热力学上更容易氧化的小分子取代常规的氧释放反应。肼,乙醇,乙二醇和尿素比放氧反应更容易被氧化,但缺乏低成本,高效的小分子氧化反应电催化剂,制约了其发展。本文中,通过两步法制备了基于支撑在碳纤维纸上的硒化钴纳米片阵列的柔性电极(CoSe / CFP)。所获得的CoSe / CFP对于阳极处的小分子电氧化反应和阴极处的氢放出反应是有效的。由于肼比其他物种更容易氧化,因此对肼氧化反应(HzOR)进行了详细研究。 电池电压为0.5 V时为-2,长期耐用,法拉第效率为98%。这种新颖的策略可以大大降低输入电池的电压,而不是在完全分水(1.6–2.0 V)的情况下,以节省成本和节约能源的方式生产氢气。

更新日期:2018-09-05
down
wechat
bug