当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study of mechanical degradation of sulfonated poly (ether ether ketone) membrane using ex-situ hygrothermal cycles for polymer electrolyte fuel cell application
Journal of Power Sources ( IF 8.1 ) Pub Date : 2018-08-31 , DOI: 10.1016/j.jpowsour.2018.08.067
Seyed Hesam Mirfarsi , Aida Karimi , Soosan Rowshanzamir , Mohammad Javad Parnian

In this study, an ex-situ method is used to investigate the mechanical degradation of sulfonated poly (ether ether ketone) membranes. The mechanical degradation is carried out by hygrothermal cycles test in different cycles as 1 s t to 10 t h cycles as a function of temperature and relative humidity for 700 min. The water uptake, dimensional stability, mechanical properties, and hydrogen crossover through specimens of degraded membranes are investigated after different cycle numbers. Additionally, morphological and structural characterizations included field emission scanning electron microscopy, atomic force microscopy, and X-ray diffraction are employed for understanding of mechanical degradation effects on SPEEK membranes properties. Results suggest that SPEEK membrane due to simultaneous creep and exposure to elevated temperatures and various humidity levels encounters microstructural rearrangement. The mechanical results show the ultimate tensile strengths and Young modules of SPEEK membranes increase and SPEEKs' toughness drops by approximately 80% at the end of the experiment and they act more brittle in the tensile test. Moreover, the AFM results show preexistent dead-end hydrophilic domains join each other to form more hydrophilic morphology within SPEEK and accordingly, water uptake increases. Furthermore, hydrogen crossover rate increases due to thinning and micro-flaws formation in the thickness direction and morphology evolution.



中文翻译:

异位湿热循环研究磺化聚醚醚酮膜的机械降解在高分子电解质燃料电池中的应用

在这项研究中,采用异位方法研究磺化聚醚醚酮膜的机械降解。机械降解是通过湿热循环试验在1 s t到10 t h循环中随温度和相对湿度变化的不同循环进行700分钟。在不同的循环次数后,研究了降解膜样品的吸水率,尺寸稳定性,机械性能和氢交换。另外,采用形态学和结构表征包括场发射扫描电子显微镜,原子力显微镜和X射线衍射,以了解机械降解对SPEEK膜性能的影响。结果表明,SPEEK膜由于同时蠕变和暴露于高温和各种湿度水平而发生微结构重排。力学结果表明,在实验结束时,SPEEK膜的极限拉伸强度和杨氏模量增加,而SPEEK的韧性下降了约80%,并且它们在拉伸试验中表现得更脆。此外,AFM结果显示,先前存在的死角亲水域彼此结合,在SPEEK中形成更亲水的形态,因此吸水量增加。此外,由于在厚度方向上的变薄和微缺陷形成以及形态演变,氢的穿越速率增加。力学结果表明,在实验结束时,SPEEK膜的极限拉伸强度和杨氏模量增加,而SPEEK的韧性下降了约80%,并且它们在拉伸试验中表现得更脆。此外,AFM结果显示,先前存在的死角亲水域彼此结合,在SPEEK中形成更亲水的形态,因此吸水量增加。此外,由于在厚度方向上的变薄和微缺陷形成以及形态演变,氢的穿越速率增加。力学结果表明,在实验结束时,SPEEK膜的极限拉伸强度和杨氏模量增加,而SPEEK的韧性下降了约80%,并且它们在拉伸试验中表现得更脆。此外,AFM结果显示,先前存在的死角亲水域彼此结合,在SPEEK中形成更亲水的形态,因此吸水量增加。此外,由于在厚度方向上的变薄和微缺陷形成以及形态演变,氢的穿越速率增加。AFM结果表明,先前存在的死角亲水域彼此结合,在SPEEK中形成更亲水的形态,因此吸水量增加。此外,由于在厚度方向上的变薄和微缺陷形成以及形态演变,氢的穿越速率增加。AFM结果表明,先前存在的死角亲水域彼此结合,在SPEEK中形成更亲水的形态,因此吸水量增加。此外,由于在厚度方向上的变薄和微缺陷形成以及形态演变,氢的穿越速率增加。

更新日期:2018-08-31
down
wechat
bug