当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parametric mapping of linear deposition morphology in uniform metal droplet deposition technique
Journal of Materials Processing Technology ( IF 6.7 ) Pub Date : 2019-02-01 , DOI: 10.1016/j.jmatprotec.2018.08.048
Daicong Zhang , Lehua Qi , Jun Luo , Hao Yi , Wei Xiong , Yuanbing Mo

Abstract The parametric mapping of linear deposition morphology with different droplet spacing is first proposed, which provides a baseline for parameter selection in uniform metal droplet deposition technique. Experiments related to linear deposition are carried out with deviating droplet size and deposition placement. Deposition morphology is first categorized into inclined region, wave-shaped region and horizontal region. Horizontal region is further classified into overlapped sub-region, clustered sub-region and discrete sub-region. Mathematical models about classification of deposition morphology are established by these initial parameters: offset ratio, merge ratio, solidification angle, and maximum spreading diameter. After mathematical models are established, boundaries between regions are extracted, and then verified by CCD (Charge-coupled Device) photographs and experimental data. Based on the above models and experiment results, the parametric mapping is found and verified. The following conclusions can be drawn: uncontrollable wave-shaped and clustered regions are not suitable for forming parts, hence the selected process parameters should be avoided in the above regions; Controllable inclined, overlapped and discrete regions can be used to forming part, hence the process parameters should fall into these regions. Furthermore, some possible applications are explored corresponding to three controllable regions with the help of the parametric mapping.

中文翻译:

均匀金属液滴沉积技术中线性沉积形态的参数映射

摘要 首次提出了具有不同液滴间距的线性沉积形态的参数映射,为均匀金属液滴沉积技术中的参数选择提供了基线。与线性沉积相关的实验是在偏离液滴尺寸和沉积位置的情况下进行的。沉积形态首先分为倾斜区域、波浪状区域和水平区域。水平区域进一步分为重叠子区域、聚集子区域和离散子区域。通过这些初始参数建立沉积形态分类的数学模型:偏移比、合并比、凝固角和最大扩散直径。建立数学模型后,提取区域之间的边界,然后通过CCD(电荷耦合器件)照片和实验数据进行验证。基于上述模型和实验结果,找到并验证了参数映射。可以得出以下结论:不可控的波形和聚集区域不适合成型零件,因此应避免在上述区域中选择工艺参数;可控的倾斜、重叠和离散区域可用于成型零件,因此工艺参数应落入这些区域。此外,在参数映射的帮助下,探索了对应于三个可控区域的一些可能的应用。不可控的波浪形和簇状区域不适合成型零件,因此应避免在上述区域内选择工艺参数;可控的倾斜、重叠和离散区域可用于成型零件,因此工艺参数应落入这些区域。此外,在参数映射的帮助下,探索了对应于三个可控区域的一些可能的应用。不可控的波浪形和簇状区域不适合成型零件,因此应避免在上述区域内选择工艺参数;可控的倾斜、重叠和离散区域可用于成型零件,因此工艺参数应落入这些区域。此外,在参数映射的帮助下,探索了对应于三个可控区域的一些可能的应用。
更新日期:2019-02-01
down
wechat
bug