当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of epoxy functionalized MWCNTs reinforced PVDF nanocomposites with high dielectric permittivity, low dielectric loss and high electrical conductivity
Composites Science and Technology ( IF 8.3 ) Pub Date : 2018-10-01 , DOI: 10.1016/j.compscitech.2018.08.041
Saddiqa Begum , Hameed Ullah , Ayesha Kausar , Mohammad Siddiq , Muhammad Adeel Aleem

Abstract Nanocomposites of Polyvinylidene Flouride (PVDF) with Multi-walled Carbon Nanotubes (MWCNTs) possess excellent thermal, piezoelectric and conductive behaviors. However, the potential of MWCNTs as filler in polymer composites is hampered by their poor dispersion into the matrix, corresponding to the strong inter-tubular and weak inter tubular-polymer chain interactions. This issue is successfully overcome by utilizing di-glycidyl ether of bisphenol-A (DGEBA) grafted MWCNTs (DG-MWCNTs) as reinforcement in PVDF matrix. To synthesize the desired nanocomposites, the easier to manipulate, solution casting technique was employed. The resulting PVDF/DG-MWCNTs nanocomposites have different loadings of filler ranging from 1.0 wt% to 10 wt%, and have shown variation in the phase transformation from α-phase to β-phase along with improvements in thermal and dielectrical behaviors. It was revealed by the impedance spectroscopy (IS) that the reinforcement of PVDF with DG-MWCNTs leads to an increase in the dielectric permittivity. This increase was found higher enough to reach up to ∼5288 (at ∼100 Hz) and 214 (at ∼102 Hz) for filler loading of 10 wt %. The increase is several hundreds of magnitude i.e., ∼204 at ∼102 Hz higher than the PVDF matrix, while retaining a low level conductivity (4.18 × 10−6 S/cm). This enhancement in the dielectric permittivity is attributed to the strong interfacial interaction between PVDF and DG-MWCNTs, and was explained by the Maxwell-Wagner-Sillar (MWS) effect.

中文翻译:

具有高介电常数、低介电损耗和高电导率的环氧功能化多壁碳纳米管增强 PVDF 纳米复合材料的制备

摘要 聚偏氟乙烯 (PVDF) 与多壁碳纳米管 (MWCNT) 的纳米复合材料具有优异的热、压电和导电性能。然而,MWCNTs 在聚合物复合材料中作为填料的潜力受到它们在基质中的分散性差的阻碍,这与强管间和弱管间聚合物链相互作用相对应。通过利用双酚 A 的二缩水甘油醚 (DGEBA) 接枝的 MWCNTs (DG-MWCNTs) 作为 PVDF 基质中的增强材料,成功克服了这个问题。为了合成所需的纳米复合材料,采用了更易于操作的溶液浇铸技术。所得的 PVDF/DG-MWCNTs 纳米复合材料具有不同的填料负载量,范围从 1.0 wt% 到 10 wt%,并且已经显示出从 α 相到 β 相的相变变化以及热和介电行为的改进。阻抗谱 (IS) 表明,用 DG-MWCNT 增强 PVDF 导致介电常数增加。对于 10 wt% 的填料负载,发现这种增加足够高,达到 5288(在 100Hz 时)和 214(在 102Hz 时)。增加了数百个数量级,即在 102 Hz 时比 PVDF 基质高 204,同时保持低水平的电导率(4.18 × 10-6 S/cm)。介电常数的这种增强归因于 PVDF 和 DG-MWCNT 之间的强界面相互作用,并且可以通过 Maxwell-Wagner-Silar (MWS) 效应来解释。阻抗谱 (IS) 表明,用 DG-MWCNT 增强 PVDF 导致介电常数增加。对于 10 wt% 的填料负载,发现这种增加足够高,达到 5288(在 100Hz 时)和 214(在 102Hz 时)。增加了数百个数量级,即在 102 Hz 时比 PVDF 基质高 204,同时保持低水平的电导率(4.18 × 10-6 S/cm)。介电常数的这种增强归因于 PVDF 和 DG-MWCNT 之间的强界面相互作用,并且可以通过 Maxwell-Wagner-Silar (MWS) 效应来解释。阻抗谱 (IS) 表明,用 DG-MWCNT 增强 PVDF 导致介电常数增加。对于 10 wt% 的填料负载,发现这种增加足够高,达到 5288(在 100Hz 时)和 214(在 102Hz 时)。增加了数百个数量级,即在 102 Hz 时比 PVDF 基质高 204,同时保持低水平的电导率(4.18 × 10-6 S/cm)。介电常数的这种增强归因于 PVDF 和 DG-MWCNT 之间的强界面相互作用,并且可以通过 Maxwell-Wagner-Silar (MWS) 效应来解释。增加了数百个数量级,即在 102 Hz 时比 PVDF 基质高 204,同时保持低水平的电导率(4.18 × 10-6 S/cm)。介电常数的这种增强归因于 PVDF 和 DG-MWCNT 之间的强界面相互作用,并且可以通过 Maxwell-Wagner-Silar (MWS) 效应来解释。增加了数百个数量级,即在 102 Hz 时比 PVDF 基质高 204,同时保持低水平的电导率(4.18 × 10-6 S/cm)。介电常数的这种增强归因于 PVDF 和 DG-MWCNT 之间的强界面相互作用,并且可以通过 Maxwell-Wagner-Silar (MWS) 效应来解释。
更新日期:2018-10-01
down
wechat
bug