当前位置: X-MOL 学术Land Degrad. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Increased ammonia emissions from synthetic fertilizers and land degradation associated with reduction in arable land area in China
Land Degradation & Development ( IF 3.6 ) Pub Date : 2018-09-14 , DOI: 10.1002/ldr.3139
Wei Ouyang 1 , Zhongmin Lian 1 , Xin Hao 1 , Xiang Gu 1 , Fanghua Hao 1 , Chunye Lin 1 , Feng Zhou 2
Affiliation  

For a long time, there has been an excessive use of synthetic fertilizers applied to the decreasing area of arable land to help meet the increasing food demand, which causes NH3 volatilization and land degradation. In this study, we conducted a nationwide inventory of NH3 emissions from synthetic nitrogen fertilizers in China from 1991 to 2013. We estimated that NH3 emissions increased from 3.20 to 5.21 Tg NH3 yr−1. Because of the different agricultural practices, fertilizer use schedules, and ambient temperature, monthly NH3 emissions have varied greatly. NH3 emissions during the spring and summer accounted for approximately 83% of the national total in 1991, 1998, 2005, and 2013. Similarly, the spatial distribution of NH3 emissions exhibited large heterogeneity in 1991, 1998, 2005, and 2013. High emissions occurred in the eastern and central provinces and eastern Sichuan. Based on NH3 emissions in Chinese counties for 1991–1998, 1999–2005, and 2006–2013, the Pearson correlation coefficient was applied to compute the changing trends in NH3 emissions and fertilization rates. The results showed that the NH3 emissions from the major grain‐producing regions increased, whereas those from the eastern provinces, which experienced rapid economic development, decreased. In addition, fertilizer amount, arable land area, grain yield, and primary industry have been shown to be largely correlated to NH3 emissions based on principal component analysis. Therefore, the results of this study have significant implications for improving the efficient use of fertilizers and preventing soil and/or land degradation.
更新日期:2018-09-14
down
wechat
bug