当前位置: X-MOL 学术Comput. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and control of battery systems. Part I: Revisiting Butler–Volmer equations to model non-linear coupling of various capacity fade mechanisms
Computers & Chemical Engineering ( IF 3.9 ) Pub Date : 2018-08-24 , DOI: 10.1016/j.compchemeng.2018.08.016
Resmi Suresh , Raghunathan Rengaswamy

Lithium-ion batteries, affected by various capacity fade mechanisms, require an efficient battery management system that can prolong battery lifetime by periodic diagnosis, subsequent management and control. The work presented in this two-part paper is an investigation and development of strategies for battery modeling and controller implementation, which are two of the essential components of any battery management system. In this first part, a generalized approach to incorporate non-linear coupling of various capacity fade mechanisms is proposed. Though there exist numerous models to capture effects of various capacity fade mechanisms, they fail to model non-linear coupling as they assume linear superposition of individual current densities (provided by individual Butler–Volmer equations). Considering battery as a system with multiple reactions (both desired and undesired reactions), rate equations can be written for the overall system. Re-deriving a single Butler–Volmer equation from this rate equation provided insights regarding the true nature of coupling between various reactions inside a battery. Incorporating various side reactions using this framework to a detailed ideal battery model would help in understanding the behavior of a battery with aging and this information can be useful to diagnose various problems in the battery. For demonstrating the implementation and usefulness of this approach, SEI layer formation and Li plating are incorporated to a detailed battery model in this article.



中文翻译:

电池系统的建模和控制。第一部分:重新研究巴特勒-沃尔默方程,以建模各种容量衰减机制的非线性耦合

受各种容量衰减机制影响的锂离子电池需要高效的电池管理系统,该系统可通过定期诊断,后续管理和控制来延长电池寿命。这份分为两部分的论文介绍了电池建模和控制器实施策略的研究和开发,这是任何电池管理系统的两个基本组成部分。在第一部分中,提出了一种通用方法,该方法将各种容量衰减机制的非线性耦合合并在一起。尽管有许多模型可以捕获各种容量衰减机制的影响,但是由于它们假定各个电流密度呈线性叠加(由各个Butler-Volmer方程提供),因此无法对非线性耦合进行建模。将电池视为具有多个反应(期望的和不期望的反应)的系统,可以为整个系统编写速率方程。从该速率方程式重新推导一个巴特勒-沃尔默方程式,就电池内部各种反应之间耦合的真实性质提供了见解。将使用此框架的各种副反应纳入详细的理想电池模型,将有助于理解电池的老化行为,并且此信息对于诊断电池中的各种问题可能很有用。为了演示此方法的实现和实用性,本文将SEI层形成和Li镀层合并到详细的电池模型中。从该速率方程式重新推导一个巴特勒-沃尔默方程式,就电池内部各种反应之间耦合的真实性质提供了见解。将使用此框架的各种副反应纳入详细的理想电池模型,将有助于理解电池的老化行为,并且此信息对于诊断电池中的各种问题可能很有用。为了演示此方法的实现和实用性,本文将SEI层形成和Li镀层合并到详细的电池模型中。从该速率方程式重新推导一个巴特勒-沃尔默方程式,就电池内部各种反应之间耦合的真实性质提供了见解。将使用此框架的各种副反应纳入详细的理想电池模型,将有助于理解电池的老化行为,并且此信息对于诊断电池中的各种问题可能很有用。为了演示此方法的实现和实用性,本文将SEI层形成和Li镀层合并到详细的电池模型中。将使用此框架的各种副反应纳入详细的理想电池模型,将有助于理解电池的老化行为,并且此信息可用于诊断电池中的各种问题。为了演示此方法的实现和实用性,本文将SEI层形成和Li镀层合并到详细的电池模型中。将使用此框架的各种副反应纳入详细的理想电池模型,将有助于理解电池的老化行为,并且此信息对于诊断电池中的各种问题可能很有用。为了演示此方法的实现和实用性,本文将SEI层形成和Li镀层合并到详细的电池模型中。

更新日期:2018-08-24
down
wechat
bug