当前位置: X-MOL 学术Ceram. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization of ‎bioactivity behavior and corrosion responses of hydroxyapatite-ZnO nanostructured coating deposited on ‎NiTi shape ‎memory alloy‎
Ceramics International ( IF 5.1 ) Pub Date : 2018-12-01 , DOI: 10.1016/j.ceramint.2018.08.197
Masoud Sabzi , Sadegh Moeini Far , Saeid Mersagh Dezfuli

Abstract In this research, a ceramic combination of Hydroxyapatite and ZnO with a weight ratio of ‎‎50:50 was deposited on NiTi shape memory alloy by Electrophoretic Deposition Process ‎‎(EPD). Deposition of the Hydroxyapatite-ZnO on NiTi alloy was performed by applying 50 ‎volts for 100 s. The sintering operation was then conducted for 2 h in a furnace ‎under an argon atmosphere at 500 °C. In the next step, the morphology and thickness of the ‎coating were studied by Field Emission Scanning Electron Microscopy (FE-SEM). In addition, ‎bioactivity behavior and corrosion resistance of the coating were evaluated using ‎electrochemical tests, and the rate of the Ni ion release has been investigated in ‎Simulated Body Fluids (SBF) solution. The FE-SEM observations on the morphology of the ‎Hydroxyapatite-ZnO ceramic nanostructured coating revealed that a non-crack coating with ‎approximate 135 µm thickness was deposited on the NiTi alloy. The results also ‎showed that the Hydroxyapatite-ZnO nanostructured coating leads to the formation of ‎ion exchange barrier on the NiTi alloy surface which acts well as a barrier to penetrating ‎nickel ions in the body fluid, in such a way that the corrosion resistances of NiTi alloy has been ‎increased significantly in the presence of Hydroxyapatite-ZnO coating. Also, the adhesion ‎strength of the Hydroxyapatite-ZnO ceramic nanostructured coating on NiTi shape memory ‎alloy was highly desirable (about 25.4 ± 0.1 MPa).‎

中文翻译:

沉积在 NiTi 形状记忆合金上的羟基磷灰石-ZnO 纳米结构涂层的生物活性行为和腐蚀响应表征

摘要 在这项研究中,羟基磷灰石和氧化锌的陶瓷组合,重量比为 50:50,通过电泳沉积工艺(EPD)沉积在 NiTi 形状记忆合金上。通过施加 50 伏电压 100 秒,在 NiTi 合金上沉积羟基磷灰石-ZnO。然后在 500°C 的氩气气氛下在熔炉中进行 2 小时的烧结操作。在下一步中,通过场发射扫描电子显微镜 (FE-SEM) 研究涂层的形态和厚度。此外,使用电化学测试评估了涂层的生物活性行为和耐腐蚀性,并在模拟体液 (SBF) 溶液中研究了 Ni 离子释放的速率。FE-SEM 对羟基磷灰石-ZnO 陶瓷纳米结构涂层形态的观察表明,在 NiTi 合金上沉积了约 135 µm 厚的无裂纹涂层。结果还表明,羟基磷灰石-ZnO 纳米结构涂层导致在 NiTi 合金表面形成离子交换屏障,作为渗透体液中镍离子的屏障,从而使耐腐蚀性能在羟基磷灰石-ZnO 涂层的存在下,NiTi 合金的显着增加。此外,NiTi 形状记忆合金上羟基磷灰石-ZnO 陶瓷纳米结构涂层的粘附强度非常理想(约 25.4 ± 0.1 MPa)。结果还表明,羟基磷灰石-ZnO 纳米结构涂层导致在 NiTi 合金表面形成离子交换屏障,作为渗透体液中镍离子的屏障,从而使耐腐蚀性能在羟基磷灰石-ZnO 涂层的存在下,NiTi 合金的显着增加。此外,NiTi 形状记忆合金上羟基磷灰石-ZnO 陶瓷纳米结构涂层的粘附强度非常理想(约 25.4 ± 0.1 MPa)。结果还表明,羟基磷灰石-ZnO 纳米结构涂层导致在 NiTi 合金表面形成离子交换屏障,作为渗透体液中镍离子的屏障,从而使耐腐蚀性能在羟基磷灰石-ZnO 涂层的存在下,NiTi 合金的显着增加。此外,NiTi 形状记忆合金上羟基磷灰石-ZnO 陶瓷纳米结构涂层的粘附强度非常理想(约 25.4 ± 0.1 MPa)。
更新日期:2018-12-01
down
wechat
bug