当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micro-mechanical damage model accounting for composite material nonlinearity due to matrix-cracking of unidirectional composite laminates
Composites Science and Technology ( IF 8.3 ) Pub Date : 2018-10-01 , DOI: 10.1016/j.compscitech.2018.08.012
Ghazi A.F. Abu-Farsakh , Haitham M. Al-Jarrah

Abstract A new micromechanical damage model for predicting the effect of matrix-cracking on the mechanical behavior of the composite material is proposed. The model is based on the volumetric change that occurred due to the presence of cracks in a composite lamina due to uniaxial off-axis loading. It determines the volumetric crack-density (VCD) by combining the macro-mechanical and micro-mechanical principles. A representative volume-element is proposed that determines the material mechanical properties (E1, E2, G12 and ν 12 ) in terms of crack-density, fiber and matrix properties and initial volume-fraction of fibers. The rule-of-mixture in combination with Halpin-Tsai model is used to determine the mechanical properties of a cracked composite lamina. It has been shown that, matrix-cracking is the main cause for composite-material nonlinearity. Moreover, the model has been shown to give a reliable and reasonable predictions of the VCD and the tangential damage-factor (TDF) for various fiber/matrix systems using the corresponding available data from literature. An alternative secant damage-factor is being proposed, which has a linear relationship with the VCD. In order to validate the model, two composite materials; Boron/Epoxy (Narmco-5505) and Graphite/Epoxy (4617/Modmor-II), have been considered using laminates at different fiber-orientation angles. The maximum volume-crack-density (MVCD) and maximum secant damage-factor (MSDF) are obtained using equations that depend on the fiber-orientation angle and the initial material mechanical properties.

中文翻译:

单向复合材料层压板基体开裂引起复合材料非线性的微观机械损伤模型

摘要 提出了一种新的微机械损伤模型,用于预测基体开裂对复合材料力学行为的影响。该模型基于由于单轴离轴载荷而导致复合薄板中存在裂纹而发生的体积变化。它通过结合宏观力学和微观力学原理来确定体积裂纹密度 (VCD)。提出了一种代表性的体积元素,它根据裂纹密度、纤维和基体特性以及纤维的初始体积分数来确定材料的机械特性(E1、E2、G12 和 ν 12 )。混合规则结合 Halpin-Tsai 模型用于确定开裂复合层的机械性能。已经表明,基体开裂是复合材料非线性的主要原因。此外,该模型已被证明可以使用文献中相应的可用数据对各种纤维/基质系统的 VCD 和切向损伤因子 (TDF) 进行可靠和合理的预测。正在提议另一种割线损坏因子,它与 VCD 具有线性关系。为了验证模型,两种复合材料;硼/环氧树脂 (Narmco-5505) 和石墨/环氧树脂 (4617/Modmor-II) 已被考虑使用不同纤维取向角的层压材料。最大体积裂纹密度 (MVCD) 和最大割线损伤因子 (MSDF) 使用取决于纤维取向角和初始材料机械性能的方程获得。该模型已被证明可以使用文献中相应的可用数据对各种纤维/基质系统的 VCD 和切向损伤因子 (TDF) 进行可靠和合理的预测。正在提议另一种割线损坏因子,它与 VCD 具有线性关系。为了验证模型,两种复合材料;硼/环氧树脂 (Narmco-5505) 和石墨/环氧树脂 (4617/Modmor-II) 已被考虑使用不同纤维取向角的层压材料。最大体积裂纹密度 (MVCD) 和最大割线损伤因子 (MSDF) 使用取决于纤维取向角和初始材料机械性能的方程获得。该模型已被证明可以使用文献中相应的可用数据对各种纤维/基质系统的 VCD 和切向损伤因子 (TDF) 进行可靠和合理的预测。正在提议另一种割线损坏因子,它与 VCD 具有线性关系。为了验证模型,两种复合材料;硼/环氧树脂 (Narmco-5505) 和石墨/环氧树脂 (4617/Modmor-II) 已被考虑使用不同纤维取向角的层压材料。最大体积裂纹密度 (MVCD) 和最大割线损伤因子 (MSDF) 使用取决于纤维取向角和初始材料机械性能的方程获得。与 VCD 呈线性关系。为了验证模型,两种复合材料;硼/环氧树脂 (Narmco-5505) 和石墨/环氧树脂 (4617/Modmor-II) 已被考虑使用不同纤维取向角的层压材料。最大体积裂纹密度 (MVCD) 和最大割线损伤因子 (MSDF) 使用取决于纤维取向角和初始材料机械性能的方程获得。与 VCD 呈线性关系。为了验证模型,两种复合材料;硼/环氧树脂 (Narmco-5505) 和石墨/环氧树脂 (4617/Modmor-II) 已被考虑使用不同纤维取向角的层压材料。最大体积裂纹密度 (MVCD) 和最大割线损伤因子 (MSDF) 使用取决于纤维取向角和初始材料机械性能的方程获得。
更新日期:2018-10-01
down
wechat
bug